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PhD Qualifying EXAM Syllabus

(Updates to this document must be updated on the Student Copy in the PhD Qualifying Exam
Student Resources shared drive. The Graduate Services Coordinator can edit that shared
drive.)

ST 703-704: Statistical Methods
Representative Texts

e Rao, P.V. Statistical Research Methods in the Life Sciences, Brooks/Cole.

e Ott, R. Lyman and Longnecker, Michael T. Introduction to Statistical Methods and Data
Analysis.

e Damon. Jr., Richard A. and Harvey, Walter R. Experimental Design, ANOVA, and
Regression, Harper and Row, Publishers, 9187. 508 pp.

e Neeter, John, Wasserman, William, and Kutner, Michael H. Applied Linear Statistical
Models 3rd Ed., Richard D. Irwin, Inc., 1990, 1182 pp.

e Ostle, Bernard and Mensing, Richard W. Statistics in Research, 3rd Ed., lowa State
University Press.

e Snedecor, George W. and Cochran, William G. Statistical Methods, 7th Ed., lowa State
University.

e Steel, Robert G.D. and Torrie, James H. Principles and Procedures of Statistics: A
Biometrical Approach, 2nd Ed., McGraw — Hill.

e SAS Institute Inc., SAS/STAT User’s Guide, Release 6.03 ED., Cary, NC: SAS Institute
Inc., 1988. 1028pp.

e SAS Institute Inc., SAS Language: Reference, Version 6, First Ed., Cary, NC: SAS
Institute Inc., 1990. 1042 pp.

Topics to Review

e Definition and computation of elementary descriptive statistics
e Populations and samples
e Sampling distributions and the Central Limit Theorem
e Use of the Z, t, Chi Square, and F tables
e Logical basis of confidence and tests of hypothesis
e Inference on mean, variance and proportion of one population
e Inference on means and proportions from two populations — independent and paired
samples
e Inference on variances from two populations
e Power and sample size calculations
e Basic concepts of experimental design including the concept of experimental unit,
experimental error, replication, relative efficiency, blocking, covariance, and
randomization.
e For each of the following experimental designs:
e Completely Randomized Design (CRD)



e Randomized Complete Block Design ( RCBD)
e Split Plot and Repeated Measures designs

Students Should:

e Know the models (including alternative parameterizations) and related
distributional assumptions.

e Be able to recognize which design is appropriate for a given experiment and
understand the advantages and disadvantages of each design.

e Know how to construct the ANOVA table with degrees of freedom, sums of
squares and mean squares.

e Know what hypotheses can be tested and how to test them, including use of
expected mean squares to find appropriate denominators.

e Know how to estimate and place confidence intervals on meaningful linear
combinations of the fixed effects such as treatment contrasts, treatment
means and other linear combinations.

e Know how to estimate the variance components in the model (using method of
moments) and how to use them to obtain variances for linear combinations of
(estimated) fixed effects (and understand the correlation structure as a function of
these variance components.)

e Be able to recognize replication and subsampling, and account for them in
the model, ANOVA table and analysis.

e Know how to make multiple comparisons using a number of procedures that
adjust for multiple testing, including the Tukey-Kramer, Scheffe, Bonferroni, and
Benjamini-Hochberg procedures.

e Know how to account for one or more covariates.

e Basic concepts of treatment designs including:

e Treatments and treatment combinations

e Control versus experimental treatments

e Factorial treatment designs

e Factors and their levels

e Main effects and interactions (1st order, 2nd order, etc.)
e Nested designs

e Nested-Factorial designs

e For balanced data, partitioning of the treatment sum of squares in the ANOVA table for
each of the treatment designs for fixed, random and mixed models and interpret
expected mean squares.

e Multiple regression using matrix notation, including

S AR
SSE Y - YO*

e Model and assumptions
e Normal equations and parameter estimators
e Properties of the estimators

J_mko% Bt = (\lf\i -V )7 n'~P e Inference in multiple regression, comparing subsetted models

Pue oo i (Ni- Vil n-n

e Lack of fit and pure error
e Residual diagnostics, including



Misspecified mean model
Misspecified covariance model
Ouitliers and influential points

Multicollinearity

e Correlation

e Analysis of Covariance
e Biased Regression
e Penalized regression (e.g., ridge, lasso, etc.)
e Reduced dimensions (e.g., principal components, partial least squares, etc.)
e Generalized Linear Models
e Model and assumptions
e Inference
e L ogistic regression
e Poisson modeling
e Linear Mixed Models
e Models, assumptions, implied covariance structure
e Subject-specific versus marginal model
o ANOVA-type mixed models
e Inference
e Clustered/repeated measures/longitudinal data

ST 701-702: Statistical Theory
Representative Texts

e Casella, G. and Berger, R.L. Statistical Inference, 2nd Ed., Wadsworth/Brooks Cole,
Pacific Grove, CA, 2001.

e Hogg, R.V., and Craig, A.T. Introduction to Mathematical Statistics, 4th Ed., MacMillan.
e Rohatgi, V.K. An Introduction to Probability Theory and Mathematical Statistics, John
Wiley & Sons, New York, 1976.

Topics

e Basic probability calculus

e Random variables, probability distributions, density functions and distribution functions
e Discrete probability models: e.g. binomial, Poisson, geometric, negative binomial,
hypergeometric, etc.

e Continuous probability models: e.g. uniform, exponential, beta, gamma, normal
Weibull, Cauchy, extreme value, log-normal, etc.

e Multivariate probability models: multinomial, bivariate normal
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e Expected value, variance, covariance, correlation, moments (about zero and about the
mean) and moment-generating functions

e Moments of functions of random variables

e Joint distributions, conditional distributions, marginal distributions and expectations
e Distributions of functions of random variables, order statistics

e Chebyshev’s, Markov’s and Jensen’s inequalities

e Normal theory: joint distribution of the sample mean and variance, central and
noncentral distributions for Student t, Chi square and F

e Convergence in probability and the weak law of large numbers

e Convergence in distribution, the central limit theorem, asymptotic normality, Slutsky’s
theorem and the “delta method”

e Sufficient and minimal sufficient statistics

e Ancillary statistics

e Complete statistics

e Basu’s theorem

e Method of moments, maximum likelihood estimation

e Bayesian inference: prior and posterior probability distributions, conjugate priors,
Bayes estimators based on squared error loss; hierarchical models

e Properties of estimators -- unbiasedness, mean squared error, Cramer-Rao lower
bound, Rao-Blackwell and Lehmann-Scheffe theorems, UMVUE, consistency,
asymptotic efficiency

e Logical basis for and properties of hypothesis tests

e Type | and Il error, level of significance and power

e Simple and composite hypotheses

e Unbiased tests

e Likelihood ratio tests

e Neyman-Pearson lemma for MP tests; Karlin-Rubin theorem for UMP tests, UMPU
tests

e Asymptotic tests: chi-square, Wald, score

e Confidence interval construction by inversion of hypothesis tests

e Confidence interval construction using pivots

e Properties of confidence intervals: shortest length, UMA and UMA unbiased

ST 705: Linear Models

Representative Texts

e Graybill, F.A. Theory and Applications of the Linear Model, Duxbury, N. Scituate, Mass,
1976.

e Monahan, J.F. A Primer on Linear Models, CRC Press, 2008.

e Searle, S.R. Linear Models, John Wiley, New York, 1971.



e Seber, G.A.F. Linear Regression Analysis, Wiley, 2003.
Topics

e Review of linear systems of equations, generalized inverses and projection matrices,
vector spaces and subspaces

e Linear statistical models and reparameterization

e Least squares theory and computation, including normal equations and partition of
sums

of squares

e Estimability and estimable linear functions, restricted models

e Gauss-Markov theorem, BLUE, and generalized least squares

e Theory and application of multivariate normal distribution and related distributions of
quadratic forms: central and noncentral chi-squared, central and noncentral F. Cochran's
Theorem

e Testing the general linear hypothesis and Likelihood Ratio Tests

e Joint distribution of several BLUEs under normality

e Confidence intervals and sets for parameters and predictions

e Random effects, mixed models, and variance component estimation
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The lack of fit test

Fill in the missing numbers (??) in the following analysis of variance table resulting from a
simple linear regression analysis.

Click on the light bulb in each cell to reveal the correct answer.

Source DF Adj SS Adj MS F-Value P-Value

Regression 12.597 0.000
” 7 ?

Residual Error

” ” ”
Lack of Fit 3
” ” ”? ”
Pure Error 0.157
” ”

Total 14 15.522



Table A.2 Coefficients ¢; for orthogonal polynomial trend contrasts

v=3 v=4
Trend c SR Trend o) o)
Linear -1 0 1 Linear -3 =1
Quadratic 1 =2 1 Quadratic 1 =1
Cubic —1 3
v=>5
Trend C G G ¢ G
Linear -2 -1 0 1 2
Quaderatic 2 -1 =2 -1
Cubic —1 2 0o -2 1
Quartic 1 -4 6 —4 1
v==6
Trend C C C3 Cs Cs G
Linear -5 =3 —1 1 3 5
Quadratic 5 -1 -4 -4 -1 5
Cubic -5 7 4 -4 -7 5
Quartic 1 -3 2 2 =3 1
Quintic —1 5 =10 10 =5 1
v=7
Trend C C C3 Cs Cs Ceo
Linear -3 =2 -1 0 1
Quadratic 5 0 -3 -4 -3 0
Cubic -1 1 1 o -1 -1
Quartic 3 -7 1 6 1 =7
Quintic -1 4 -5 0 5 -4

Sextic 1 -6 15 =20 15 -6
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Siee.
Power = P Reject Ho | Hi)
(Powsr for p , known ¢>)

(cr/(‘ '
eii—%,&-ﬁ':rtho, 0

PCZ>Z4 | Moo)

Hh R R Power
MM 2>%. | - BEr SR =BER BN = p( L4 > 2a | po )
Mepmo | 2ot | B4 = p( It - A 5 7,- 428 | usm)
MEpe | 121020 | BAE- 20 )t B2 270 = - B(Ra-2A)

effecr size M, fhoeﬁm:ffm\omm
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eq. |- B(Za— 2£°R) > B2 Y2 R) 2B
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Mattipe Teting

Family-wie, Type T omor e :
1. PCReax Hol [Mi=My) = ai < inditdual st ave rove

2. Ho: = - = M i thon
*= P (L}J Reject Heij|p.= =/M.<) < {-’amig—w\se ond- e (FWER)D
£ ZP(Refoc Ho [ M, = = )
= (;\)\*i_/ Im not swe if shy (f) ¥ Pim, beawe (k-1) teots ae oriowgn |
bvr that gy ponsilered o unnett- mathod (2>
(loppl E- dest
Ho: 1B6=0
® LO & estindde
@ rnkcl) = rnk(X) - |
® Ho te = @ i +he null spre od L

SSR [ ank()
F = SSE/(n--k@) < whtoer L iy wed | the 95+ ShbistiL 1S the Same (for global F)

Ho
ne F
anKK)-(, N-ank(xD

Global F-fest : Full vs. Reduod model

SSE(Hs) = SSECH.) SSE(Ho) — SSECHV
-  AMEM) - JPECHD = tankex) —1 < S globn|
SSECH) /dREHD SSECHD /10~ 0nkQY) é—— Py modeh
Ganom\ Rules:

1. all pavaise , vse Tuked
2. 12 pawise with entrel | use Dinnett-

3. 1% gmeal LO wi smAll rank LD | uSe Bonfroni  <— whon # o€ 4omt 15 small
K. whon i dowbt , use sdiefe

5. When impme. Bonforoni , avoid massie igetion |, use  Benjamind

6. Fher doos hothing




Fisher
0 * tage an *¥SE(LE) < obiimsly inwonest
: k
té t tape, app * SECLH) p=(z) & # of panetos iobed in Ho.

in

Benjamini-Hochberg Step-Up Procedure (For large k to avoid mass rejection)

two-sided p-wlne
e

1. Compute p-values p; = 2 Pr(tay,,,,, > \@/SE((;/)\) Goal: Control FDR < X2q

2. Reject H](J if pj < Tpy where Tpy := max{pg) : py) < af;1 <j <k}
Note: FDR is the expected ratio of the number of falsely rejected null hy-
potheses.

Tukey

28 £ 9t Xae.s "SECLH)
Tk HSD - ks o e 1%Vl

" Se(ed) { M +75)

™ ths Tukey HSD follots o Sdonied ronde divt

Scheffer
No_indertapion : <— e.g. one-usy ANOIA

A 7
0 + J(m"k“)‘l)}:m\«x)-hw,d. SECEH)
A iegieprmn . AL Enor

:q—.a_f_esknmble
(indepondent)
" ~ max - lank (L)
Intowpt: <— e.g. fall mnk e modeA
A 2 .
26t Jm“k‘“)anx).n—mkm).& SECEB) oc majbe. ANODUA with u 7

For £l lonk e madeh : C140)

St of Squoe n_testing.

R(B P, ) = SSRCB, 1) ~ SSR(A) = Special case: model A sets p — g parameters to 0
R(BaB3 | B,,8)) = SSR(R, By, Be, ) ~SSRCR,B, ) = Arrange model B parameters: (Bo, -, Bq) By+1, s Bp)
= ROPA B3 \B. ) + SSR(R) - (RCP\B) + SSR(B) = Hy: Model A “true” & B4y =~ =, = 0
- R(Pu BBy () — RCAIR) = Hy: Model B “true” & Not all S, 1, -, f, equal O

*R(Bgs1s r BylBos ) Bq) = SSR(H;) — SSR(H¢)
=R(B, "'erl)BU) —R(By, ---vﬁq|ﬁo)




Hypothesis Teshng (23

F-test

~ No CXp, G2In $SE
Y I//\"ﬂ P ,) . YOOy | g2
= Np ~ NONp, O"NIRYAD o> n-r

N - 42— 2
indepondont e G2 = wr V(T-PoY whoe TS A Ky

Theowm : In she mode Y~ NaOXPy €310) with wriknown (3, ¢
ﬁMLE = (Xx)ﬂx'\j and 3’MLE = 'ri‘q’u-my

Ho: kKB =m Hi: kKB #m < gimde i Ki e o(Cx)

where, ker™S with nkck) =5 amd gy clumn of k 1S W colcx’>.

e gonoral hear hypothess 15 said 1o be destabe R kB 15 estirabe  ond
has £all mink .

Lemma: T2 KB is esmade , thon H:= KCxxvk er™ is non- Singmlor- .
H= kOxxok = KW amoirk = kO w
ankCw) S MN§NsS S = tankc k) = MK (XKCXRY KD = ank( Xt ) € Wahk (w)
S = k(W) = rank (W) = vank CH)

Eamge: V~ Np(xB, 633n) KB~ NCKP , 0*Kxxk ) = N KB, ¢*H)
EGRBYEM > kB-m Lpo, a*HD

—— «B-mY WkB-m) (0> ~ s

Lo Lot Yn n(M,v) and A, B symmerc mabices . Thon if BuA =0 ,
YAY and yBY me indepsndev
TV (I-POY ~ Ynr
enotler v= o1, A= (I-Px) , H= Kxxk= 107, b= kixxoke!
Beawse BVA =0, BY 15 indepmiont of Y'AY.

- A [ETRL Y 2 lo
E = (m, MY H (kB-mr/a’s ‘e Fq, o
N (Z-Pr)Y /g™ ¢n-rd

/':(-L F I K - I, 2
s, nr ( gz (KB-M)'(KkB-m))




Likeglinood Ratio Yost

N,:=§(B,6*) : kB=m,c>0}
0 ::f(ﬁ.d‘) 8 Bem”, T>04
xS, )3 B 5 Pom RNE
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i T3 XX P Ay
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Mhp=k,s=m

(

P(IR<c | Hod= &

M—xr‘su‘)% 2((9(@)
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Example : IR = ( £
Y- Xy I QCBr)
Rejess Ho if (Q(@jg)% cc  or [RBO-OEI/s > BE (R
Q) &y fonry S

s iy acfm\j an F ‘et .
Theaom: 1 KB is ostivide and Br s prrt o€ o Nluhm to the RNEs with

pstram KB =m , then
R -ABY © —(ﬁH )XX(pﬂ m

@ ‘(\<R» m](K(xx)gl<)(k'r3—n'\)
©, '

= CKB-mY (kB -m)
Pool:  Q(BHY- QLB = [ Y- XBu 1= 1l Y-XxB II?
Il x¢p - Rl
CB- B X 'X(B-BR) —
(B-Py Y XX (XRTXX (B-Pn)
Ok XXk Bn

SHHQH

]

A o g N
(B-Pr)KOH
a

(B-BRY & Nk (B fr)
@ = (KE-m) K (kp-m)

0,

1

0

"

XX b + K B = Xy
XX B = Xy - KOn
Xlx(lg 'ﬁH) = ké\h
KK XX (p-Bn) = KTxxYk 61
Bu = H' K Xx(p-Fh)
(A wxcﬁ—ﬁﬂ)

C{_:B/ DH)

Sina k= XA




COM“; IF kB is estimabe omd l% Solves Yhe normal eguatims, then +the (%H Gmpohont
of o Solutim 0 the RNE Solev,

xXp = XY~ K( KCxx k3 (kB -m)
é\H Sohes  KXp + KOu = xy
XXp = X'y - Ké\H
= Xy - kH KB i)
= XY= KH (KB~ m)

Thivom . 1R PP s o Systom o |near quendem ., non- estmade <Funcﬁms and é‘H
IS pak f A Solutim o +the, RNEs with nstaint PR=6 , thon

QCB) = QB md BH =0 .

Boul:  XXBy 4+ POH = XY , and 50 PO = XY~ XBu) € pLex') Fﬁ
plies PG = O,

Sine. P is non- esimade |, mlcp) Noalcr) =£0%, whh

P has Pall golumn tonk , S0 it must be e ove it Bn=0. This,
Bue {xxp=xy}

So thnt QUB) = QUEH)

1 Mubti s

Singe_estimable function N>
Yo Mn(XB, In) |, el i NP IS estiide | hen P B = KIKY

NB~ NAAB, PN . IR we ostiaie ¢ uwith ¢ = mrYlI-POY,
then 4o NN .

JENExOPN g
thns Pclt‘ < Toe e\lz) = |l-a = &L Coll9rm5€,

A
CI: Np € [Xb = Trraa (SN0t A NB + Toran {§2X0ex)A ]




Multipe esimode, functin AR

fnsder s estimade fancims , MB, AP, -, AsB , when let A = (At As)
with |meardy deperdent clumng N = )?.')
NB~Ns (AR, A CxsIN) (A's'
In thiy onse
PCaj< AjB <bj)=1-& , Vje il s}, whee

@:= NA = T \Ié\")\'(x’x)a)\

bj:= NB + trnen - JENOOA
However,

s
PCA{g ;B <bji)< p(aisAP<b)=I-a
<-) Thus , Need +o mb\m— -ﬁxmig-wise Type - L - evor

Theolem: Lex $Ej3 be o wllectim o) mensumide @wonts . then
(). PCYEj) € 2 PCE;)
(). P(OE;) 2 I- TPE;)
PCAE)) = |- PCLAE;®)
|=PCYE;“) by DeMognns rule
Z;. PCE;SD by

\/

@ Bonfnoni methok:  odjns- loveh of endh sl os /s .

Boa{oroni mexhod intoven|
PCay \J\.J\% by)=1-a , ¥jeils3, whee

Q:= 7\6 thraicasy - \Ié"‘)\l()('x)g)\
bj: 7\6 t oy - \Ié“‘)\'(x’x)g)\

PCASG <N B<b;3) > (fo5€ AP <b53°)

2
= 1-R CT owuge 2 [~




@ SceflR method  (onsimet o confrdena, inowa\ Y lherr cmbinatim. UNTS of e fam
M. = (/Lfl\'éi c-N& wasian
whee ¢ 15 suth thar PCUbBE Tne)) = =&
Cx: UAP £ S Fsnra " & unemiu
tonk of tert MSE AR

(® Twkey method
Rephie. Towoa by eonoc,a " Studortizel rnge dipbatim quantile

#of pmamoers inolies\ MSE d@
PCa<AjB<by) =& , Vje il s}, where
0j:= NB - Ftrmra * {TNGTRPA
bj:= NA + Qehmrea * {GNGRIN




Hypothesis Testing (3)

© dedwn yler A £ A,

.+ d d: ¥ Ru®) < Raal0) YO, with "<” fur at leass me 9.

: 1@ A 5 dompused b\lj some. wle, | fon ity  obernte. ics gdmbe.
5 [minimax] Ra®) = TN 1A% Ra(9)

BO\A\)IBS' Decizm Rule prioc disprotn of O with pdfcpmEd PE).
* Bagey risk & dhe enpoded loss -
Ya(®) = £ L(dwx), 0]
=gl ET Lo, 8)1S]]
= Eol Ra(9)]
Ya(@) = EC LCdend 9))
= ELETLEE.6) IXT)

= E [ oxpeced postode loss for dexyJ

: Baaésr decen vole,
. Yap@ = M @)
* oy ot exir | mow not be ungue

° ngef aShimatee -
Lia 8) = a-o6y > olq(n)-Etelx-xj
Linvg)=|a-8l 3 dex) = medmn 6| X=x]
"oy dorirg O P o treme

Expgvteh possorine loss
ETL0.0NxxT = § Los({alse augd P(O=2| X=x) if acepr Ho

Loss( folse 1gjeut) PO =2e | x28) # 1ot Ho

BM\je; ek @ rob Ho tm
4)4;(7‘)={Ho t 0<® ot e e

Ho €& O©>@

A by e wrt. a geml s fidin L g admissive wat. L.
b admissde > & bayes vule = LRT
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Pommeter Estimation

Simpe. Linenr  Repression
VAN,
(v (Xi i) = ECOXi =Mx)0Yi - My)
felatim «
= Lov(Xi ¥i) | B (Yi -AY)

Pry = ay oxay

E( xv /'Ax Y- -/‘Y
R\_ featr For Jém\: Soe, Pledvs pAges

SO -Y) = SON-9r v 32 -9
S—— —_— —
SST SSE
¥
TN =YY se
(n-25
0<R <\ :

3sR
SST

R*=

@ C rxy)z

in SIR
Residuals & asommptim chedr : R
E o s Ei i

=Y -
~ N(o, ¢+
O indeppndank  asswmptin is (mpowide o chedz. -
@ Resiha\ wrgmt varmn .

A
P fov(Xi, Vi) = 5 X (Xi- KX Yi-T)

> g = G LY

Sum @ Squme. tegressin. : (ompares fived value undar

SSR <— SR +o fited vAne agmmig ECYIX=x) =B,

5 the % o tomal oo oxpluhed by the Simple lhear legresn model .

®*Lack R ics vhon S0 o tend i resunl
Ste. pelvs Hable - s

® Nomlity agmmptim.
normal *
legnt mile <

A AL

left- sleened y vight Seawed
heaw +oileh 71 bmodal
AN LT

Theoreticd\ gquansile



Estimators
Yi= Bo + BX; +E&; C.-"yN(olv‘)
> ﬁ(‘o'; ;{-“FJAI—)?

SECB) = {Moel + 5osr)

think these s .

n 3 7P v ] X G
= Yxy _ Sxy Sy _ Sxy _ ZO6-%)Yi-N) Lol cteyon!
> Pro= Sx Sy = SxSy Sx ~ Sxx _  TiXi-X)* G (RK) = g 0 Z(xi _f)_‘-:. RPNV
|
;E(Xr?)‘

SE(B:) = {ME (k)
> §= 13"0 + 6l Ko
SECY) =\|M5E(il+ TRgF) € L ik hoe ve do Nt osuwe £, L,
>V = P;\c + Bl %o + Enu
~ ( (X-xad2
SEY) = \IM‘)EU*W"' So-XR) € 9% PL i prevms pages

Linem- Regressinvs. Porolization.
(Odvows ) Jensr Squme Regressim. -
B < MBSl - B BXa— = BpXpr )
>0 may e mY Mot be unapeky dewemied
> oot . Gontev & scle all Xy — Oxgi— K /S
thn Po= T = S Vik enld lie conoy Y os el
1> PO = (xx+A1Y'XY Yir> Vo wivh no ie-apt Gl i X

Ri Regressitm
linear m Y ?5= avg&‘h Tty Vi~ BomBia = = BoXpi )1+ P F)J‘z
> Bolome -~ mminie SSE V. ke length & sope veser dote 4o 0. P
> Hghly cottelosed prdpr varmdes -

- OLS shpe & nor well detvmined , hae (e wwinna

~ shiking B, - B; 1o dote to O helps detormmaimn
> fonndan . gontev & sole ol Xji — Oxi = X5 /S

Yi > Vi-§ with no erapt folumn n X .

N> PP o (xre MYy < Shrikoge.  estiroin
> B = ECH™®~ B) = A tAIR ~ Use Sherman-MorRon Widbiny Rrmuloy

> varC ™) = (XXX ANLY (KX (KK ANT] > bipseh regesin

“ Po




S
B= O S0 (Y- BBk =~ BoXei )+ N I3y
> fononyan oty & sole ol Kji — OXi - i) /S5
Yi \;-Y with no Mr@pt Colwmn in X .
> B™ s 1o desgh=fom a5 15 non-fngur-.
> CloseA frm oxpesing oxisk N specdl ame -
ommd / ?m\eo\ pvedv\ws + When X has®odhom\ folarng = X'x =T
LSepd : F)— KKKy = ﬁ) =Xy
LS : keep k predits hove the, lougsﬁ- mpact  <— Best Subset
"o R edquals
* ovier lﬁﬂtul Z Zlfbckll L >/|F;(p3l
: i{i Bl 2| Buol topot By 5 othowiise., epork 0.
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Best Subset Ridge  glope : T .TH Lasso
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—“g"'“\ \,’ | o> iy
oo — 0.0 o0
- tfam ,,' """7\
> Proporties

Seatind . Multicolnearity o p relatigy to n

Must coriev and_saile piedivirs
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© Scrlng, mowers Por_pledtng Y (7)
Ps AT, bho0o : bme 1 vamna b




Ridge vs. Laso
Ridae = . B—>0 not oxady 0
( 1e won most pledeirs v, imprtant )
2. Shirinks o similr coeffuony estimes When Concloved

lasso: I B— o0 equals 40 ©
C impleit yarnbe. selevtiun.)
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(onntim 2 Corver anA stile prdTins

1. X-sppe. —> Wspa  (om gl be done)

2. Golwmns of W (50165 = lnemr combitims of Lolumns o X
3. Clwms o w5 oddoah by reemna

4. Orop inelavent golwmns +o get Wegs — spac.

5. Podorm bode onenstm Weg> = X 4o do tnfrenc. .

Pricipal [omponertt Regessin (PCRD

chovses “Staes” withows o Y

PCR: | “W-space” from eigenvalue- ion of X'X Understanding principal components when p = 2
© Eigenvalues A; > --- > . Corresponding orthogonal eigenvectors vy, ..., v,
as columns of matrix V R

* Xvy explains the most variation in the X-space, namely ( -4 100% of
the variation in the X-space pcr = .839 * popn + Zgg * aj
pcy = 544 x popn — . * a

Xvy and Xv; together explain (5A:222) 100% of the variation in the X-space

o e
Ad Spending

W = XV has p columns, also known as p “principal components”
The kth principal component is “irrelevant” if its

" i 6.14 om LR
o eigenvalue is “small” compared to the largest eigenvalue, i.e., if kth condition
) A oy - . . . .
index dx = |/ 3% is large (say > 10) 0 » » © " M o
* estimated regression coefficient is statistically zero Population
]
8 o %
5 g
) 5
5 9 g
2 & e
3 e
< g 2,
Fig 616 from ISLR 4 2 4 0 12 3 S 2 a0 1 2 3
st Principal Component st Principal Component
c® 28
5 s
g g g
8 2.
Fgolfomistk 10 05 00 05 10 40 5 00 05 10
2nd 2nd

Parta\ Leasy Sqmg: aes  (PLSRD
. \\) 1] . g strong correlation with Y
&l 0 SPaes ‘Mm Y ® Does not naturally arise from elegant matrix algebra
y g g

* More algorithmic, less theoretical

W-space” simultaneously seeks high levels of variation in the X-space and

® Can be quite effective
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ECY 10D = Xp
V({190 = ¢*H
Retlue, wihge: v = Y- =y~Hy =CT-H)y
Fat 1 Ziri =0 ¥ models with Hrept
Facr 2: Resduals are alwags ponclased
“var(¥) = 67CI-H)
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<R always

Md@ pedbor thrt- doos ot inoawes R™ consing odj R +o deneas
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EOWXa X0 = 0K+ Z 00 0 poy 1K) = X6, + % = %0
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By = oiIrne = (%)
Weld)= ARy > ik’
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WY([SJ‘) = zﬁ 23 |-|7;—’ R-squwued vlne hentiy x; oS lesporse
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Under- Spedfntim

True Moder = ECNilX= X)‘
Oade. eimor - 9 = (WRY' XY

Ec@r— g

Umg)= Goxxy’

EMSE)= @& 5 n-Q4pP) DF

K'J i z GXJ 0Q. EWY 1% X) = X0, + %0y = X0

ssumeds Model :
EQYi X2 %) = Z Bixi; + Z O"J R EIX) = x@,
Estinguor - 6.= (‘f\\)‘l) Ay mbraced\ when
< I X\I h e

Etal) = U\(Ni‘Xl' (Xlg\ +XL92_) = 9."’ C/‘IIXD'XIKJ. 92. OrthenoMmaA\
lbvl,é\\): 61CX|IX\5|
E(ME) = ¢4 QkB2) 76~ = n-c+p) OF <DE

PUNNEL: Hypoless Tost Tpe L £ Tops I oS unpediible . SCTX o o 4o

Rephusan. ard \ode= o=+ can deresk undovspeared model . s of o sm MSpueE
alwy: wnbrsed >




| ingww MixeA Modek

1. In linewr models , we prswer vu. € asount fa- he by in the respore not  enplamed
!25 e pmdwfs.

2. 6=V ‘/“u
5 =(1- "KRIRDY ~ Nlo, (1 XOKIK)G2)

3. Modeh formulon va'= Yy~ arxb + x:z2 + Lev'2) - |

a%b : atb + a:b
X:2 : infoactim of X and 2

1cv2): |imeov pedotr deponds s v Modeh : Y= atb + ab + xz + v*
=l : no infevept
J. Kroneckpr product notatn:
1, 1,0
15 )"‘13@15 (Oia) i;_@(Iz@i;)
1,0
13 o 13

5. Linear Mixeh Modeh :
Whon estimating Ga  Type 3 : vsed o sve the tests , but GF <O with MSR <MSE
) : Provdes %,% >0 , biaseh
an ML) = n(\/ XpYCY - xra) ne@ﬁhvej bace
REML : l%vml%’ T /o  EC8R) =q7
a* (REML) = n—p Cy=-xBYCY~xB ) pnbmsed

In SAS : proc Mixed
In R: lmecd for newed
lmet) o nested & crossed

(1l la) : yandom 9?{?\99\' ‘FW‘ [} ggee’.{:‘a“w@ pages
C 1 a:b) : andom efbxr fiv ab inoadin. (slope)
Prediction

AN E) im0 the e
g~ MO, R)

fovla.2) =0

Two varieties . ..
® Marginal, aka population-averaged:
Y =Xp3
. gonditigna\, aka cluster-specific:
Y =XB+Za where & is best linear unbiased predictor
i.e., @ is conditional mean of « given observed y

a=GzTv (y - XB)

BLUP property relies on known G and R
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Model specification
The following formula extensions for specifying random-effects structures in R are used by

« lmes
« nlme (nested effects only, although crossed effects can be specified with more work)
+ glmmADMB and glmmTMB

McMcglmm uses a different specification, inherited from AS-REML.

(Modified from Robin Jeffries, UCLA:)

formula meaning
covm II'L { (1|group) random group intercept “+ “hﬂ\dmﬂ gKJIAP"
Ig_m (x|group) = (1+x|group) random slope of x within group with correlated intercept 4 “m’\dﬁ’\ \nmp‘_ /S“\"F}t =5WWP n
Y‘U'{'e_ (0+x|group) = (-1+x|group) random slope of x within group: no variation in intercept
(1|group) + (0+x|group) uncorrelated random intercept and random slope within group
(1|site/block) = (1|site)+(1|site:block) J(Eteesr;e;p:av:z\rr;ge:f:;r;? sites and among blocks within sites + \|m“dom blo(k (5\’({,) "
site+(1|site:block) fixed effect of sites plus random variation in intercept among

blocks within sites

(x|site/block) = (x|site)+(x|site:block) = slope and intercept varying among sites and among blocks
(1 + x|site)+(1+x|site:block) within sites
(x1|site)+(x2|block) two different effects, varying at different levels
x*site+(x|site:block) fixed effect variation of slope and intercept varying among sites
and random variation of slope and intercept among blocks within
sites
(1|groupl)+(1|group2) intercept varying among crossed random effects (e.g. site, year)

(s wndev Aitkon modeh , want 4o test on B but novie SN0, V)

1.8 V is knom , Ho:AB=m infrong s oxact,

9. I V= d"0 with D knom | use REML method\

3. If V=0"D whh both >, D wnknown , ise Type IL + Srorttinaite / Kenwmdh Regpe P AR

Sitwasm. Estimation,
V know GilS [ Aileon
V=6¢"D, D known REML Y Por )
V=6"D , boih arikem. | RE M|/ ML
tl\
A
REML £ G* Type 1L vsed for Jesting
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Example: Fabric

Two types of yarn are used to weave fabric on looms. In our shop, we have three
operators and we randomly select three of our many looms. We will have each
operator run each yarn type on each loom twice. The order of these runs will be at
random.

The operators are the only three we have who are qualified for this type of
weaving. We are interested in comparing them. The yarn types are the only two
available for this particular application and are different in the type of fiber used.
The looms, on the other hand, are of no particular interest and are thought to be
representative of the collection of looms that might be used for this type of
application.

The data are average puncture resistance measurements made on five randomly
selected spots on the cloth. Here are the data:

Loom 1 1 1 2 2 2 3 3 3
Oper 1 2 3 1 2 3 1 2 3

Yarn1 | 59,52 43,42 48,54 | 83,86 68,71 83,82 | 50,43 35 30 42 41
Yarn 2 | 81,73 54,56 59,68 | 99,98 82,88 98 94 | 63,62 49,40 60, 56



Computing
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proc mixed data=fabric; class loom operator yarn; Some medel ,
model resistance=operator|yarn / solution; dw@u“.memﬂa
random loom loom*operator loom*yarn loom*operator*yarn;

proc mixed data=fabric (method=ml}) class loom operator yarn;

model resistance=operator|yarn / solution;
random loom loom*operator loom*yarn loom*operator*yarn;

proc mixed data=fabric(method=type3) class loom operator yarnm;

model resistance=operator|yarn / solution;
random loom loom*operator loom*yarn loom*operator*yarn;

proc mixed data=fabric method=type3; class loom operator yarn;

model resistance=operator|yarn / solution(ddfm=satterth)

random loom loom*operator loom*yarn loom*operator*yarn;

proc mixed data=fabric method=type3; class loom operator yarn;

model resistance=operator|yarn / solution @dfm=kenwardroger;

random loom loom*operator loom*yarn loom*operator*yarn;
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REML: 62 = 406.43, 52, = 0, 62, =0, 62,y = 0, 52 = 12.06
ML: 52 = 270.84, 52, = 0, 52, = 0, 52,y = 0, 52 = 10.23
type3: 62 = 407.90, 62 = —1.60, 52y = —1.97, 52, = 0.87
type3 w/ Satterthwaite or Kenward-Roger:

52 = 407.90, 52 = —1.60,152, = —1.97, 52, = 0.875, 52 = 13.19

Examples
00000000000

Estimation Inference on A

(e}

Computing

00 9% this adgm‘skn\em- 8000.

G G2 unlenown, U5t ©

02 =13.19

Effect ndf ddf F value Pr>F || Param Estim SE df  Pr>|t|
Oper 2 4 68.31 .0008 || O, — 05 6.83 2.00 4 .0271
80.51  .0006 1.85 4 .0208
96.59  .0004 1.98 4 .0259
96.59  .0004 1.98 ' 7.44 .0096
Yarn 1 2 159.34 .0062 || O, — O3 —11.0 2.00 4 .0054
187.80  .0053 1.85 4 .0040
617.58 .0016 1.98 4 .0051
617.58 .0016 efus onby hos 1.98 (7.44 0007
O*Y 2 4 | 060 5932 ||y e T olee
0.70 5474 \ aS Tﬂp&l oS ﬁ
0.48 .6496 the. Same. with
0.48  .6496 df e 3pme )
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Computing ...SAS: proc glimmix

Example [Corn): Consider an experiment to study the effects of @ planting methods

and & pesticides on Each pesticide is applied by aerial spraying to 2
large fields. Each large field is subdivided into 4 subplots, and the 4 planting

methods are randomly assigned to the 4 subplots. 3v2-0 feldo tom)

* Completely randomized split-plot design

® Y = yield of jth planting method within kth field receiving ith pesticide
ik

R o 2l B (@ e iy~ N©.0),
proc glimmix data=corn; @I @ O Pt o TN
€~ N(0,0%), Cov(y. €ix) =0,

class pesticide field method; y
model ' yield=pesticide|method / solution;

random field(pesticide);

nesteh

proc glimmix data=fabric;
class loom operator yarn;
model resistance=operator|yarn / solution;
random loom loom*operator loom*yarn loom*operator*yarn;

** Results for FABRIC differ (a little) between mixed and glimmix **



fit.

fit.

Computing

Computing ... R
Function 1me () in package nlme is very popular, but is limited to
random effects.

Function 1mer () in package 1me4 can handle bothand
random effects. It is also newer and better able to deal with large

datasets.

But more structure and flexibility in [specifying matrices G and R is
offered by 1me () compared to Imer (). —Ths § neded . T ik the
S bemike. « Hhpe 1S Mo outsie,
‘ardom {oacir: Gield .
corn = lmer(yield ~ pesticide * method + (1|field:pesticide), data=corn)
e WnnGD0 cavnot stand by fslf

fabric = lmer(resistance ~ operator * yarn + (1|loom) +
(1|1loom:operator) + (1|loom:yarn)+ (1|loom:operator:yarn), data=fabric)



Sleep Study
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Sleep Study

Interested in average reaction time for sleep-deprived subjects.

Before day 0, subjects had their normal amount of sleep.

On following nights, subjects were limited to 3 hours of sleep.

Subjects were given a series of tests on each day.

This dataset is balanced with no missing observations.

Reaction is average reaction time (ms) on a series of tests given each Days
(values 0,1,...,9) to each Subject (there are 18 of them).

Yjj: reaction time for subject i/ on day j
Xijj: day j for subject i on day j
E(Yjj) = Bo + B1.Xj expect 31 >0

But different people may respond differently ...

E(Yj) = Boi + B1iXij
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oe 0o 00000 o 000 00

But different people may respond differently ...

E(Y}) = Boi + B1iXi

® 5o, Pi1;j as fixed effects limits us to inference on these 18 subjects

® (o, P1j as random effects allows inference on a broader scale

Boi = o+, agi ~ N(0, o)
b = P14, aq; ~M N(0, o)

Yij = Bo + P1Xij + i +@aiXij + €jj
L for diffpons poeon , effr diffpens

Called the “random intercepts, random slopes” model.

Independently over /, for i=1,..., N =18,

Y =XB+Z,a; + €, o~ N(O, D)7 € ~ /\/(07 R,'), a;, €; indep
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Sleep Study Grouped Data
oo ®0 000000 oo

Clustered Data / Repeated Measures / Longitudinal Data
“Single-level LMM"”

Independently over i, for i =1,..., N,
Y, =XB8+ Za;+ ¢, a; ~ N(0,D), €; ~ N(0, R)), a;, €; indep
® Y, is n; x 1 observed response vector for ith cluster
e X, is nj x p known covariate matrix for ith cluster :
e IBI'S >l< 1 unknown fixed effects mayno Wl ol the
i
p [ n the w\r\dot\f\ E@W .

® Z;is nj X g known matrix for ith cluster
® «; is g X 1 random, unobserved, for ith cluster

L é 21 0 (s 5] €1 R1 0

TN Xi/\/ 0 Z/\/ QN EN 0 R/\/

G=1Iy®D, =X n,  V=diag{Vi,...,Vn}, V,=2Z,DZ[+R;



Grouped Data
oe

Single-level LMM: N groups (indexed i = 1,..., N) each containing n;
observations

\ & :X,-,6+Z,-a,-—|—e,-7 Qj ~ N(O, D)7 € ~ N(O7 R,'), a;, €; indep

Two-level LMM: N first-level groups (indexed i = 1,..., N)'each with n;
second-level groups (indexed j = 1,..., n;) containing nj
observations

Y,'j :X,-j5+217,-ja,-+227,-ja,-j+e,-j, aj ~ qu(O, Dl), Qi ~ qu(O, Dz)7

€ij ~ Np, (0, Rj), aj, ajj, € indep

® Single-level and two-level LMMs are great for nested groupings.
Not for crossed random effects.

® Not happy with assuming vectors of random effects are independent?
Use “extended LMM" or “hierarchical specification™:

Replace aj, €; indep with €ila; ~ N(0,R;)
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Sleep Study] Software — R

> str(sleepstudy)

’data.frame’: 180 obs. of 3 variables:

$ Reaction: num 250 259 251 321 357 ...

$ Days tnum 0123456789 ...

$ Subject : Factor w/ 18 levels "308","309","310",..: 1111111111 ...
> plot(sleepstudy)

> xyplot (Reaction™Days|Subject,sleepstudy)

Ni =% tBDay;+ Soi + i Dyi + €0 5 doi LS, Qiil 2
fit.sleep = lmer(Reaction ~ Days + (Days|Subject) , sleepstudy)
#includes random intercept; allows correlated REs
summary (fit.sleep) Y; = B +ﬁ.0a5.- + doi * Sii Doyt + i Qoildi L&
fit.sleep = lmer(Reaction ~ Days + (Days||Subject) , sleepstudy)
#includes random intercept; REs uncorrelated
summary (fit.sleep) Y, = Fio“'plDWj; 1 doi t aui!%ji +%| Aoilaunléerl
fit.sleep = lmer(Reaction ~ Days + (1|Subject) + (0 + Days|Subject), sleepstudy)
#REs uncorrelated
summary (fit.sleep) \i = Bo"'P'DW‘j‘ + doi + dliw\lj\' +¢; &o:ldﬂlg\
fit.sleep = lmer(Reaction ~ Days + (1|Subject) + (-1 + Days|Subject), sleepstudy)
#REs uncorrelated
summary (fit.sleep)

fhose thae. wore eo(w»mkm’n



Reaction

02468 tware — SAS
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> fit.sleep = lmer(Reaction ~ Days + (Daysl|Subject) , sleepstudy)
> summary(fit.sleep)

Linear mixed model fit by REML [’lmerMod’]

Formula: Reaction ~ Days + (Days | Subject)

Data: sleepstudy FomEAE etnern rnodds FH*QA

REML criterion at convergence: 1743.6| b5 REML, lower s  beter.

Scaled residuals: SMHMYA‘BX )resrdl/\(llj B ShOW\M e ‘
oot oachy bremh o.asey s.upes dinsn o§ mokh ores <l ol
. . . . . A m_\_ O)
be symmenic. & gaere s in
Random effects: f~Sulsjoux T@S\

Groups Name mi;;e Std.Dev. Corr. allwe both WHev@RT  [ther brseline. 1™

Subject (Intercept) 612.09  24.740 o slope vanos by Hee.
Days 35.07  5.922 (0.07) growp © + Aoi +AuX; | IX A

Residual @54.9D 25.592 I how ach Dy affne

Number of obs: Subject, 18

thev Repein

Fixed effects:

Estimate Std. Erro Dav 0C bselne)
chm Himg on VY
(Intercept) 251.405 6.825\ 36.838 <— GKW*“’\ v

Days 10.467 1.546 \ 6.771 «— Avpage N chowge by e oddirma\ d‘l‘ﬁ

englomel oy eiver el
Correlation of Fixed Effects: vanane nd\- 5
(Intr) Loc model O mdom '

Days -0.138 dm\gnnsﬁb Y;:{so +BXi + Qoi + i X¢
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000e00
> fit. sleep = lmer(Reactlon ~ Days + (DaySIISubJect) , sleepstudy)
> summary(fit.sleep)
Linear mixed model fit by REML [’lmerMod’]
Formula: Reaction ~ Days + ((1 | Subject) + (0O + Days | Subject))
Data: sleepstudy

REML criterion at convergence: 1743.7

Scaled residuals:
Min 1Q Median 3Q Max
-3.9626 -0.4625 0.0204 0.4653 5.1860

Random effects: 'H
Groups Name Variance Std.Dev. et nev Not €4 WV§&\
Subject  (Intercept) 627.57 25.051
Days 35.86 5.988
Residual 6563.58  25.565

Number of |obs: 180, groups: Subject, 18
. Namig Conuartin onby: novw o Sepadie. rondom efleors

Fixed effects:

Estimate Std. Error t value

(Intercept) 251.405 6.885 36.513

Days 10.467 1.560 6.712

Correlation of Fixed Effects:
(Intr)
Days -0.184




337
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331
352
333
372
332
351
369
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335
334
350
349
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Subject

-40 -20
] I

|
(Intercept)

20

> dotplot(ranef (fit.sleep))

tware — SAS
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> fitsleep.profile = profile(fit.sleep); densityplot(fitsleep.profile)

tware — SAS
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Recall R command

> fit.sleep = lmer(Reaction ~ Days +{(Days||Subject) , sleepstudy)
random

The following yield equivalent results . .. s{\!ixpe Slope

i\

; T

proc mixed data=sleep covtest cl; C 4B+ ABiy + %-\-
class subject; /ﬁ/‘c-ﬂ' i J J .)
model reaction=days / solution cl; \L \L

random subject days*subject / solution; Fix random rrdon
proc mixed data=sleep covtest cl; MT Mieroph testdual
class subject;
model reaction=days / solution cl;
random intercept days / subject=subject solution;
proc glimmix data=sleep;
class subject;
model reaction=days / solution cl;
random subject days*subject / solution;
proc glimmix data=sleep;
class subject;
model reaction=days / solution cl;
random intercept days / subject=subject solution;



Correlated R & G Matrices
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Correlated R & G Matrices

Ime4: :1mer: R = o2l only; G diagonal (use || instead of |) or completely
unstructured (use | instead of ||)

proc mixed: R controlled by repeated stmt; G controlled by random stmt

proc glimmix: R controlled by random stmt, with _residual_ before “/";
G controlled by random stmt

e Autoregressive of order one, i.e., AR(1) type=ar (1)
1 p 0 pz
1 pop
R = 0,2 4
P p 1 p
PP op 1



e Compound symmetry

® Toeplitz, two bands

® Toeplitz, three bands

R = o2
R = o?
R = o?

P1
p2

DD

DD D

P1

P1
P2

@
o

T PR D

P1

P1

P2

P1

P1

orrelated R & G Matrices

@0

Y T

P2
P1

type=cs

type=toep(2)

type=toep(3)



® Unstructured

® Unstructured, one band

® Unstructured, two bands

o7 o1
o1 03
013 023
014 024
o2 0
0 o3
0 0
0 0
o7 o1
012 03
0 o023
0 0

Correlated R & G Matrices
ocoe

type=un
013 014
023 024
U% 034
034 Uz
type=un(1)
0 O
0 0
U% 0
0 oF
type=un(2)
0 0
o3 O
2
03 034
2
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Recall R command

> fit.sleep = lmer(Reaction ~ Days + (Days|Subject) , sleepstudy)
The following yield equivalent results . ..

proc mixed data=sleep covtest cl;

class subject;

model reaction=days / solution cl;

random intercept days / subject=subject solution type=un;
proc glimmix data=sleep;

class subject;

model reaction=days / solution cl;

random intercept days / subject=subject solution type=un;

covtest diagg / wald cl;
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Longitudinal modeling that allows correlation across time for each subject . ..

proc mixed data=sleep covtest cl;
class subject;
model reaction=days / solution cl;
random intercept days / subject=subject solution;
repeated / subject=subject type=ar(1);

proc glimmix data=sleep;
class subject;
model reaction=days / solution cl;
random intercept days / subject=subject solution;
random _residual_ / subject=subject type=ar(1);
covtest diagr / wald cl;
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ST704, Sujit K. Ghosh

Generalized Linear Models, Part |
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Classical Linear Model (LM):
Y = XB +e, e ~ N(0,5°1)
® Y isnx1, observed
® X is n x p, known covariate matrix
® 3is p x 1, unknown fixed effects

e Parameters to be estimated: 3, o2

In other words . ..
e Linear Predictor, aka Systematic Component:

X3 x,-Tﬁ is ith entry, often n;
e |dentity Link:
E(Y;)=xB ... "link" transforms E(Y;) to linear predictor scale

e Random Component:

Yi,..., Y, indep normal with var(Y;) = o2
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Generalized Linear Model (GLM)

e Linear Predictor, aka Systematic Component:

X3 x,-Tﬁ is ith entry, often n;
e Link:

g(E(Y))=xB ... E(V)=g'(x'B)

Note that g(-) is link, g~1(-) is inverse link

e Random Component:

Y1,..., Y, indep from the exponential family with dispersion

parameter

lParameters to be estimated: 3 and w‘

Properties of link function g(-): e monotonic and invertible
® maps mean response to a scale where covariate effects are additive
® ensures range restriction for mean response
e distns in exponential family have “canonical” or “natural”’ link functions

any suitable link function may be paired with any distribution in the
exponential family
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Goals for GLM

® Fit the model, i.e., estimate B and ¥
® Cl and HT for 3: need distribution, standard error
® |nference on functions of 3:

® Hy: AB =m?

* Estimate mean response g ! (x3) ...Cl & HT?
® How well does the model fit?
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Exponential family with natural parameter 6 = 6(u), dispersion (scale) parameter ),
and known weight w: pdf has form ...

0: — b(O:
f(yi) = exp {}4’7(’) + C(Yi,wwi)}
Yw;
for some functions b(-) and c(-)-
N(ui,o?)
_ 1 (i — i)\ (vi—m) 1 1. 5
flyi) = Wexp{—T = exp —T—Eln(%r)—aln(a )
—y? — 12+ 2yp
= exp oY o2k 1 | (27r),,|n( 2)
202
1,2 2
_ Yiki — 317 Yi 1 1 2
= exp —Q 502 " 5 In(27) — 5 In(c?)
—_———
0; = pi, = o> cyi»dwi)
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Exponential family with natural parameter 6 = (), dispersion (scale) parameter v,
and known weight w: pdf has form ...

Fly) = exp { yi0i — b(6;)

Yw;
for some functions b(-) and c(-).

+ C(y,',TJ)Wi)}

Y; is proportion of successes: %Bin(n,-7 pi)
i

. . . njyj
n » R n P )
< ! )P'{hy'(l — Pi)n’ niyi — ( ! ) <4 ! ) (1 _ Pi)n'
n;yi niyi/ \1— pj

= eXP{”iYiln( Pi )+ni|n(1*Pi)+|n(ni>}
1—p n;y;

i iYi

f(yi)

= exp

y,-|n(1_',,,.) —In (ﬁ) +|n(ni)

niyi

9,-:|n< pi-)vll]:lywi:l/n,' c(yi,pw;)
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Exponential family with natural parameter 6 = 6(u), dispersion (scale) parameter ),
and known weight w: pdf has form ...

f(yi) = exp { yia + C(Yi,wWi)}

for some functions b(-) and c(-).

Poisson(\;)
e—%,)\}.’i
fyi) = ——=ep yilnxj — X —In(y;!)
yi? ———— ——
Oi=InAj,v=1w; =1 c(yirpw;)
b(0;) =X\ = e’
Properties:

LA :is mean function
® b'(6;) is ‘variance’ function, with (var(Y;) = yw;b”(6;)
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0 (i) b'(6;) b"(0;)
Distribution Canonical link Inverse link Mean function | ‘Variance' fnc
for Y; wi | gu)=x'B | g7 '(x/B)=p E(Y)) T var(Y)
N(pi, 0?) 1 wi; identity xT 3; identity Wi 1
1 1 i x
—Bin(n;, p;) - | In (lf’ ) logit —&£——; expit pi pi(1— pi)
i j pi 11e P
Poisson(\;) 1 In)\;; log eXiTB; exp Ai i

Note: The ‘variance’ function is sometimes denoted as h(u;)
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Inference on 3

® Estimate B by maximum likelihood

*vn (B_ ﬂ) 4N (07 [11(,5'3)]71) where () = FTV-IF

var( Y1) 0
®- | = 5o
T I - a T
0 var(Yn) o
In other words, B ~ N (,8, [FTV*1F} 71) ... use this for Cls

® Hypothesis testing for G
H
* Wald test: Ty = X2
H
® Score test: Ts = x2

H
® Asymptotic likelihood ratio test: T;r ~ X2 Tir =2{lH, — liy}
® Exact likelihood ratio test
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Deviance
¢(p,1; y) denotes loglikelihood

e A saturated model has ;& = y, and “fits the data perfectly”

® Consider a model M, less complex than saturated, with estimated mean
response i based on p regression parameters.
How well does Model M fit, relative to the saturated model?

® Deviance for model M is
Dy =1- Ty R: saturated vs. model M = ¥ - 2 {f(y, w; y) - E(ﬁ,, Y, y)}

¢ Scaled deviance for model M is simply Dy, /1)

N(ui, %) U, i y) = Sy {545 — Lin(ar) — $in(o?) }
Lor nomal n 1
=AUy, Yry) = Z{—Eln(Zﬂ)—fln( )}

i=1

. T2
Wi, y) {,M - % In(2m) — %m(g?)}

202

[
NE

% enncx )

i=1

)2
Dy = 1v- Z{ 202 } Z(y, /’i,-)2 =8SE...... Dy /¢ ~ x%,p is exact
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e |If Y; has a distribution ‘“close to normal” with link “close to identity,” then
D/ = X5,
® Approximation will often NOT improve as n increases!

® Suppose data are grouped, n is the # of groups and is fixed. We want the
size of each group to be large

Bin(ni,pi), i=1,...,n : want n; large

® |Lack of fit testing|. .. Hy: model M fits the data vs. H,: not Hy
Gdobal 4act-
Reject if Dum/v > X pa <

e (Consider testing Hy: model Mg vs. H,: model M, where My C M is a
submodel (i.e., nested) with g < p regression parameters. Note that

Tir= ”

X;2)7q when Hj is true
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Distribution D

N(ui,o?) 27:1(}’ 1)

A Bin(ni, pi) 237 1{" yiln (%) +(ni = niy;)In (1 Z)}
Bin(m ) 250, ! (% o= (52}

Poisson(\;)
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Estimating ¥

Some families set a value for ¢, but it is good practice to estimate it

Assuming Dy /¢ =~ Xf,fp, a method of moments estimator of ¥ is

~ D
ﬁ D/ ZE(GE ) =n—p = W= _Mp

~

® ¢ “large” may be due to

® inadequate linear predictor, i.e., missing predictors
® overdispersion, i.e., |var(Y,-) > ww,'h(u,-)l where 1 is given by family
NANAANANANAANANAAN
® Correlation between Yi,...,Y, can lead to overdispersion
NN AANANANANNANANNANANAANNANMN

[
var(B) = (FT[diag(Wl@ ce th(un))]fl,_-)fl

so over(under)-reporting the value of ¢ will lead to SEs that are too
large(small).

Recall
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A Basic Checklist

Choose family (distribution + link)
Select covariates and estimate (3

® Lack of fit testing using Dy /1) if appropriate
® Compare scaled deviances of nested models

Estimate
Report SE(BJ-), SE(1;)

Inference on nonlinear function of 3 will need Taylor's approx for SE

Model interpretation — odds, odds ratio, log odds, log odds ratio

Problems with convergence — complete and quasi-complete separation
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Inference, treating 1) as known

Maximum likelihood estimation for 3: ............................ need £(8,v;y)
* ui =g 1(x"B) is a function of 3 J ctvinl praomerse
® §; is a function of u;, and hence a function of 3

® {(p,;y) is loglikelihood function

i) = 3 { LA 20 ¢ oty o |

: w;
fi=il
® Score wrt 0: .
0l(p, s y) _yi—b (0) _ YT
00; Yw; Yw;
® Score wrt 3:

o, 0y y) 1t
o, viy) _ ¢ -
5 5100)=huw) 2 98 @ (y — ) ,

where V = diag(vwii(111)) . . ., ¥wah(u,)) has var(Y;) on its diagonal, and
F = W#T has n rows and same number of columns as X
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® Example: N(p;,0?):
:ui:XiT/@a H/:Xﬁ’ h(lu“l):]'a ¢:O-27 Wi:]-
V=0l F=9%%8_x
— XT(y — XB)/o?> =0 = XTy = XT X}, usual normal eqns

® An estimate of the large-sample variance of ,@ is

~

— ey -1
var(B) = (FTV7IF) "o g2(XTX) !
® Estimate mean response ...
° = g_l(XTﬁ) usu. biased, even if 3 is unbiased
® SE(ji): Use Taylor series of g~1(x'3) around B* to get linear
approximation, then use variance of linearization:

9o 2 . delien theoiam
var(i) = [g (n) ] xT (I?TV*II?> X

on =g

® |f the canonical link (i.e.,/n = 0(u)) is used: 3g57;(17) = 82(‘;) = h(w)

— e~ ~\ —1
var(fl) = h(fi)>x" (FTV’IF) x
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® Tests for functions of 3 may be conducted using asymptotic Wald, likelihood
ratio, and score tests, comparing each of Ty, T;r, Ts to a chi-squared

distribution with degrees of freedom matching the number of constraints placed
on G.

E.g., for testing Hy : AB = m, then

B 1
Tw=(AB—m)" (A (FTv—F) 1 AT> (AB — m)

compares to a Xfank(A) distribution
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ST704, Sujit K. Ghosh
GLM, Part Il
Logistic Regression
Probit Regression
Interpreting the Logistic Model

Example: Dose Response Modeling, using Logistic Regression
Data and plots
Logistic model

Software
SAS code: genmod, glimmix, logistic
R code: glm

Residuals and Diagnostics

Complete and Quasi-complete Separation
A Designed Binomial Study

Poisson Modeling

Contingency Tables via Poisson Modeling
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Logistic Regression

Linear predictor: x;' 3

i ion:  logit. i b plx)
Link function: logit, i.e., In (1—Pi) also In (l—p(x))
Random component: Y; independent %Bin(n,-, pi), i=1,2,...,n
logit(p(x)) = In (lf(,,x()x)) = fot+bBix|= -1+x
g'es
logit(p(x)) logit => p(x)
4 - 1.0
foncar
2 - 08
0 - 06
2 - 04
4 - 02
5 4 (oniex - 00
T T T T T
4 2 0 2 4
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Probit Regression
Linear predictor: x;' 3
Link function:  probit, i.e., ®7!(p;), where ®(-) is N(0,1) cdf also o~ (p(x))

Random component: Y; independent X Bin(n;, pi), i=1,2,...,n

oM p(x)) = Pfo+fix| = —0.6+0.6x
9¢->
probit => p(x)
logit(p(x) logit == p(x)
4 - 1.0
2 08
0 - 06
2 - 04
4] 02
a - 0.0
T T T T
4 2 0 2 4
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Interpreting the Logistic Model

In(lf(px()x)) = Bo+pix &

odds(x) = =1 ~ S & F equally likely, aka ‘odds are even’
<1 ~» Sless likely
>1 ~» S more likely

In (lf(:()x) S ~ odds (= €® = 1) are even and don’t change with x
In (15(:()x)> Ao Bo ~ odds (= ) are not even but don’t change with x

* fo>0:S is more likely odd>1
*x o <0:Sisless likely gad<)

Bo+B1 (x+1 S . o . 0
[15(:&}31)} /[15(:&)] =< :L;):;lx — is ‘odds ratio for 1 unit increase in x /

() =i = @)

® The odds at x = 0 is e®

® The odds increase multiplicatively by e®* for 1 unit increase in x
® 31 >0: p(x)tasx?T
® 51 <0: p(x) ] asxt
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Dose Response Modeling

Dose: % concentration of insecticide
Response: proportion of larvae killed, pi: yi = ki/ni, nj =20, i=1,...,7
Assume:

(1) larvae react independently
(2) larvae exposed to same conc have equal probability of survival

concentration (%) | 375 .75 15 3 6 12 24
#oflarvaekilled‘ 0 1 8 11 16 18 20

Grouped data - NOT n=7x20=140

® Choose family : Bin(n;i, p;) + logit link

® Select covariates . look at plots ...but p; =0, p; = 1 cause problems
o . ki + 0.5 P Kitni
logit:  In( ——=—) In(=p) = ln(7-xi/m
empirical logi n <n,——k,—+0.5> =) = (T =im)

: ,h ( nl'k—llk\' )

what 5 #ais 0.5
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pkills

logit

1.0 4

0.8 - o

0.6

04- o

0.2+

o

0.0 4

o

o
o
-
o

conc

conc

pkills

logit

0.8~

0.6 -

0.4 -

0.2+

0.0 4

via Poisson
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Logistic Model

Linear predictor: By + SBix, x = log,o(conc)

Link function: logit, i.e., In (lff )
pi

Random component: Y; independent Bin(n; = 20,p;), i=1,2,...,7

n(£%) = fo+bix

|
Py = |_-R._-n.x

+e
Fit to data: o
|n(lf(px()x)) = —1.7305+4.1651x = Bo-l-glx
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n(:£5) = -17305+41651x = Bo+ fix

o ¢M =0.177 estimates “odds at x = 0" (i.e., odds at ¢ = 10° = 1)
...survival is more likely (more than 5x) than death at % conc of 1

Cl: LR — (e*2'5351,e*1-°5579) = (0.079,0.348)
Cl: Wald — (e~ %% ¢7%97%) = (0.085, 0.369)

o ef1 —64.399 estimates “odds ratio for 1 unit increase in x”
... odds of death increase by a factor of 64.399 for each increase of 1% conc

Cl: LR — (e3'°174,es'60032 = (20.438,270.508)
Cl: Wald — (e*%72 e>430) = (17.943,231.135)
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Lack of fit?| ® Duy = 4.6206 Is this “large,” suggesting a bad model?

® Ok to do a formal test because n; = 20 is reasonable
Ho: model fits data well vs. H,: not Hp

p=valie = Pr (Xi_,, > Dy /qp) —Pr (X§_2 > 4.6206) — 0.4639

: .y Dm _ 46206 _ “ " .
Estimate ¢: ¢ = nj”p = 22> =0.9241 close to” theoretical value 1
Inverse regn: What concentration kills@ of larvae? ...80%7? ...1000%7?

In (%) = fo + P1xs = X5 = i{'n (&) —50}
X5 is a nonlinear function of 3, so need Taylor expansion for standard error!
Estimate SE

LD50  2.6030  0.3647
LD80  5.6016 1.0246
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SAS code

data kills;
input conc kills;
trials=20;
pkills=kills/trials;
logit=log((kills+.5)/(trials - kills+.5));
logl0c=log10(conc) ;

datalines;
0.375 0
0.75 1
1.5 8
3.0 11
6.0 16
12.0 18
24.0 20

proc sgscatter data=kills;
plot (pkills logit)*(conc loglOc) / columns=2 rows=2;
proc genmod data=kills;

model [kills/trials=log10c| /| dist=binomial link=logit typel type3 lrci;

proc glimmix data=kills;

*scale=deviance;

model [kills/trials=1loglOc| / dist=binomial link=logit solution cl;
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SAS code

proc logistic data=kills plots=all;
model |kills/trials=logl0Oc| / link=logit clparm=both clodds=both;

Options offered by proc logistic include:
® |ots of diagnostics plots, checks
® forward, backward, stepwise, best subset selection

® produce a receiver operating characteristic (ROC) curve for fitted model

BUT only for independent binomial or multinomial data
VNNANNAS NV VAN
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SAS code

proc nlmixed data=kills df=5;
parameters b0=-1.7 b1=4.0;
= 1/(1+exp(- b0 - blx*loglOc));
model [kills ~ binomial (trials,p)}
estimate ’LD50’ -b0/bi;
estimate ’LD50 original’ 10%*(-b0/bl);
estimate ’LD80’ ( log(0.8/0.2) - b0 ) /bil;
estimate ’LD80 original’ 10**(( log(0.8/0.2) - b0 )/bl);
estimate ’OR’ exp(bl);
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R code

library (MASS)
library(car)

killsDF = data.frame(conc=c(.375,.75,1.5,3,6,12,24), dead=c(0,1,8,11,16,18,20))
killsDF$loglOc = log(killsDF$conc,10)

killsDF$alive = 20 - killsDF$dead

fit = glm(|cbind(dead,a1ive) ~ logiocJ family=binomial (1ink=logit), data=killsDF )
summary( fit, correlation=T )

deviance (fit)
anova(fit)

confint (fit) #profile likelihood CI by default
confint.default(fit) #Wald CI, using z

( dose.p( fit, cf=1:2, p=c(.5,.8)) ) #Does inverse regression

predict(fit, type="response") #estimated mu

predict(fit, type="link") #estimated linear predictor (default)
predict(fit, type="response", se.fit=TRUE)

fitted(fit) #estimated mu
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resid(fit, type="deviance") #default
resid(fit, type="pearson")

residualPlots(fit) #loess smooth replaces quadratic
outlierTest (fit)

influencePlot (fit)

crPlots(fit)

library(visreg)
visreg(fit,scale="linear",ylab="log odds (death)",points=list(cex=1))
visreg(fit,scale="response",ylab="Pr(death)",partial=TRUE,points=list(cex=1))

library(glmnet)

fit2 = glmnet( cbind(killsDF$loglOc, killsDF$conc),
cbind(killsDF$alive, killsDF$dead),
family="binomial" )
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® Several types of residuals are commonly used:
® Raw or response: y; — [i;

not very useful

® Pearson: r” = ) ~ X2 =31 ,(rF)? very useful for diagnostics
wih(pi
P
o
; r
also W= where h; is leverage
. > ~ _ n _ n Dy2
® (Deviance: r;’ = sign(y; — [1;)V/d; ~ Dy =300 di =304(r7)
D
.
- . .
also NGT h very useful for diagnostics

Note: The chi-squared statistic X2 and the scaled chi-squared statistic Xz/w are often used interchangeably with the

deviance Dy, and scaled deviance Dy, /1.

® New diagnostic measure: |likelihood displacement:
LD; =2 {tu(8:y) — (B ¥)

where 8(_;) is MLE from excluding ith observation. Likelihood evaluated with all observations.

® Predicted values: [i;, response or x;" B, linear predictor
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Complete and Quasi-complete Separation!

What is it? A linear predictor (almost) completely separates response values

Complete: Pr(Y = 1|x; > 3) best estimated as 1 Quasi-complete:
y xI x2 Pr(Y = 1|x; < 3) best estimated as 0 y xI x2
01 3 01 3
02 2 02 2
03 -1 B ) 03 -1
e >3:
03 -t p(a) = —— a3 Bee g T3 -1
15 2 1+ePa 15 2
16 4 B _ 16 4
1101 plxt) = —— 03 f=—o0 1101
1110 1+ ePx 1110

Consequence: Difficulty getting convergence

Fix: Biased regression ... |\E\m\”§ penalized procedure. Other penalties

Common with: Rare events; very large predictor space; many binary predictors; small
sample size

1 https://stats.idre.ucla.edu/other/mult-pkg/faq/general/
faqwhat-is-complete-or-quasi-complete-separation-in-logisticprobit-regression-and-how-do-we-deal-with-them/
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data one;
input y x1 x2;
datalines;

R 2, PR P, O0OO0O0OO0
o OTwWwwN
|
ey

proc genmod data=one descending; -i @
model y = x1 x2 / 1lrci 1lrcl ;

proc logistic data=one; ‘3 @
model y(event=’1’) = x1 x2 / cl plcl;

proc logistic data=one;

model y(event=’1’) = x1 x2 / cl plcl ; 75 @
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10  proc genmod data=one %@

11 model y = x1 x2 / dist=binomial 1lrci lrcl ; r
NOTE: PROC GENMOD is modeling the probability that y=’1’.

NOTE: The Pearson chi-square and deviance are not computed since the AGGREGATE
option is not specified.

NOTE: Algorithm converged.

WARNING: Convergence not attained for at least one side of profile likelihood
confidence interval for Prmil. Number of iterations = 50.

WARNING: Convergence not attained for at least one side of profile likelihood
confidence interval for Prm2. Number of iterations = 50.

WARNING: Convergence not attained for at least one side of profile likelihood
confidence interval for Prm3. Number of iterations = 50.
NOTE: The scale parameter was held fixed. MPPK’P"W\‘Q %" bMOMM\ mﬁlds-
NOTE: PROCEDURE GENMOD used (Total process time):

real time 0.05 seconds

cpu time 0.04 seconds
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The GENMOD Procedure

Software
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Criteria For Assessing Goodness 0f Fit

Criterion

Log Likelihood

DF

Full Log Likelihood

AIC (smaller is better)
AICC (smaller is better)
BIC (smaller is better)

Algorithm converged.

Residuals Computing Issues  Design Poisson Modeling  Contingency Tables via Poisson
000@0000000 00O [e]e] 0000
Value Value/DF e doior,
0.0000| med&\
0.0000| gan W\ thort
6.0000
12.0000 bty Y=o V& Y|
6.2383

Analysis 0f Maximum Likelihood Parameter Estimates

Parameter

Intercept
x1

x2

Scale

NOTE: The scale paramete:

DF

1
1
1
0

Standard Likelihood Ratio 957 Wald
Estimate Error Confidence Limits Chi-Square Pr > ChiSq
-107.266 | 4.912E8 -107.266 -107.266 0.00 1.0000
25.1805 | 75202009 25.1805 25.1805 0.00 1.0000
9.5189 | 2.1684E8 9.5189 9.5189 0.00 1.0000
1.0000 0.0000 1.0000 1.0000
was held fixed. As cannct er

h.;%e, : Non-Meant -{-’ul\ /v\ns{'r\‘o\e,



Logistic  Probit Interpret Logistic Example Software Residuals Computing Issues  Design  Poisson Modeling Contingency Tables via Poisson

[e] o o 00 000 [e] 0O000@000000 OO0 (e]e] 0000
000 o0

12 proc logistic data=one;* descending; 3 (g)
13 model y(event=’1’) = x1 x2 /¢l plcl;

wah 7 Tprotite ~litelinood
NOTE: PROC LOGISTIC is modeling the probability that y=1.

WARNING: There is a complete separation of data points. The maximum likeliho

WARNING: The LOGISTIC procedure continues in spite of the above warning. Results
shown are based on the last maximum likelihood iteration. Validity of the model
fit is questionable.

NOTE: There were 8 observations read from the data set WORK.ONE.
NOTE: PROCEDURE LOGISTIC used (Total process time):

real time 0.08 seconds

cpu time 0.03 seconds

14  proc logistic data=one;* descending;
15 model y(event=’1’) = x1 x2 / cl plcl firth;
WWWWA~

; ©)
16 run; ‘Fir-é(\ m\\w\ pye(ﬂ,dwe.

NOTE: PROC LOGISTIC is modeling the probability that y=1.

NOTE: Convergence criterion (GCONV=1E-8) satisfied for the intercept-only model.
NOTE: Convergence criterion (GCONV=1E-8) satisfied.

NOTE: There were 8 observations read from the data set WORK.ONE.
NOTE: PROCEDURE LOGISTIC used (Total process time):

real time 0.08 seconds

cpu time 0.04 seconds
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The LOGISTIC Procedure @

000
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O0000@00000 VOO (e]e] 0000

Complete separation of data points detected.

WARNING: The maximum likelihood estimate does not exist.

WARNING: The LOGISTIC procedure continues in spite of the above warning. Results
shown are based on the last maximum likelihood iteration. Validity of the model fit

is questionable.

Model Fit Statistics

Intercept

Intercept and

Criterion Only Covariates
AIC 13.090 6.005
sC 13.170 > 6.244
-2 Log L 11.090 0.005

Testing Global Null Hypothesis: BETA=0

damaie l\'n‘ml-e,me’v\'ﬁ
bk e “porfa i 5 misteadiny

Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 11.0850 2 0.0039
Score 6.8932 2 0.0319
[wa1a 0.1302 2 0.9370
VVVVWWA
wald SE.

onl meAnEzany indictes

\avge, SE-
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Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq
Intercept 1 -20.7083 73.7757 0.0788 0.7789
x1 1 4.4921 12.7425 0.1243 0.7244
x2 1 2.3960 27.9875 0.0073 0.9318

vory lovge wisimbe
Odds Ratio Estimates GKP((D

Point 957 Wald !
Effect Estimate Confidence Limits
x1 89.311 <0.001 >999.999
x2 10.980 <0.001 >999.999
massile meanmg \es

Parameter Estimates and Profile-Likelihood Confidence Intervals
Parameter Estimate 95% Confidence Limits Dogs ot Empnie limits ,
Intercept -20.7083 . -2.2738
x1 F 4.4921 0.4161 berawe. livelineoh
x2 2.3960

Parameter Estimates and Wa.

Parameter Estimate
Intercept -20.7083
x1 4.4921
x2 2.3960

ld Confidence Interval

95% Confidence Limits

-165.3 123.9
-20.4827 29.4669
-52.4584 57.2505

Coe o infinite .

- incudes O, insgnifzant
- Unielizble due to infleded
Stomdad @S
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00
000
The LOGISTIC Procedure ()

Intercept-Only Model Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.

Model Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Intercept
Intercept and
Criterion Only Covariates
AIC 7.478
sC 7.557 . ) .
-2 Log L 5.478 yove, ont e\c@ with Pgrm\\ie(}\ \\he\\hoad\

Testing Global Null Hypothesis: BETA=0
Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 5.4830 2 0.0645
vata 2eres T4 0-aea0] WO IS IR L
= : 2] 2620 telmbie, M. Small o notsy data
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Analysis of Penalized Maximum Likelihood Estimates
Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq
Intercept 1 -3.2433 2.1696 2.2348 0.1349
x1 1 _9/\5319& B, 0.3318 2.4212 0.1197
x2 1 0.4777 FJ-\ 0.6322 0.5711 0.4498
N~ B
Odds Ratio Estimates (A
Point 95% Wald L nchdos )
Effect Estimate Confidence Limits | SO neAthfr S@ni&mvﬂ"
x1 1.676 0.875 3.211
x2 1.612 0.467 5.567]
Parameter Estimates and Profile-Likelihood Confidence Intervals
Parameter Estimate 957, Confidence Limits ﬁm[(j MOR. O
Intercept -3.2433 -15.6408 -0.1134
x1 0.5163 0.0516 2.1363 Hon e wald M*
x2 0.4777 -0.6628 4.5243 | (when Small Size)
Parameter Estimates and Wald Confidence Intervals
Parameter Estimate 95% Confidence Limits | |€4$ velimble
Intercept -3.2433 -7.4956 1.0089
x1 0.5163 -0.1340 1.1667
x2 0.4777 -0.7613 1.7168

Contingency Tables via Poisson
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'R Code

> one = data.frame( y=c(0,0,0,0,1,1,1,1),x1=c(1,2,3,3,5,6,10,11),

+ x2=c(3,2,-1,-1,2,4,1,0) )

> fitl = glm(y ~ x1+x2, data=one, family=binomial) <=Q© S@Pﬁm
Warning message: glm.fit: fitted probabilities numerically O or 1 occurred dotetta
> summary(fit1)

Call: glm(formula = y

x1 + x2, family = binomial, data = one)

Deviance Residuals:

1 2 3 4 5 6 7 8
-2.110e-08 -1.404e-05 -2.522e-06 -2.522e-06 1.564e-05 2.110e-08 2.110e-08 2.110e-08
Coefficients: huge m@lﬂf'lgI%? D. - D 2

Estimate |Std. Error  value [Pr(>|z]) T: = 'deﬁ—d{zm
(Intercept) -66.098 [[183471.722 | 0.000 1] ¢
x1 15.288 || 27362.843 | 0.001 1 Undgr competdy SRt
x2 6.241 || 81543.720 0.000 1

g Tvs devana [ LR tests

(Dispersion parameter for binomial family taken to be 1) aw A »zlm\o\& .
Null deviance: 1.1090e+01 on 7 degrees of freedom U,ng[A qlso hrqh\l\j h@m)
Residual deviance: 4.5454e-10| on 5 degrees of freedom

AIC: 6

foke pofor it : due +o owfiirg

Number of Fisher Scoring iterations: 24
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£h+h
> library(logistf)
> £it2 = logistf(y~., data=one) < @
> summary(£it2)
logistf(formula = y ~ ., data = one)

poralized ostinies . shrink extieme. values
Model fitted by Penalized ML

Confidence intervals and p-values/by Profile Likelihood Profile Likelihood Profile Likelihood

coef se(coef) lower 0.95 upper 0.95 Chisq P
(Intercept) -2.9748886 2.0332566 -15.47721061 -0.1208941 4.2179522 0.03999841
x1 0.4908484 0.3241088 0.05268297 2.1275832 5.0225056 0.02501994 SIBH(‘FYTAV\"‘
x2 0.4313730 0.5941957 -0.65793072 4.4758930 0.7807099 0.37692411

Likelihood ratio test=5.505687 on 2 df,|p=0.06374636, n=8

Wald test = 2.569861 on 2 df, p = 0.2766698 U(lAOf Smm“ Sﬁmp“?« ano\

Covariance-Matrix: Wm . ve IRT.
[,1] [,2] [,3]

[1,] |4.1341324|-0.4970381 -0.6764776

[2,] -0.4970381 [0.1050465] 0.0260937

[3,] -0.6764776 0.0260937 [0.3530685
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A Designed Binomial Study

An experiment involves a 4 x 4 factorial design with factors
temperature: T1, To, T3, Ta and concentration: 0,0.1,1.0,10

Completely randomized design
What is the effect on germination probability of seeds?

For each treatment combination, there are 4 dishes each with 50 seeds. Count number
that germinate, Y.
Assume

® seeds germinate independently
® seeds treated similarly have the same probability of germinating
® Then Y,'J'k ~ BIII‘I(':_)O7 TI',:,')
Some questions:
® pij = P2j = Pp3j = Paj
® Pi1 = pi2 = pi3 = Pi4
® p1.=p2. = p3. = pa
® p1=p2=p3=p4
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Code

proc genmod data=germrate;
class temp conc;
model germ/trials = temp conc temp*conc /
link=logit dist=binomial typel type3;

Modeling

Contingency Tables via Poisson
0000

fit = glm( cbind(germ,trials-germ) ~ temp*conc,
family=binomial (link=logit), data=germrate )

summary ( fit, correlation=F )

deviance( fit )

anova( fit )
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00 000 [e] 00000000000 O0e (e]e]
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Code

fit = glm( cbind(germ,trials-germ) ~ temp*conc,
family=binomial (1ink=logit), data=germrate )

summary( fit, correlation=F )

deviance( fit )

anova( fit ) \

ndn devema endn erm
fo> m A added sgquenHM\‘j
> anova(fit) 1o e motleh .

Analysis of Deviance Table

Model: binomial, link: logit

Response: cbind(germ, trials - germ)
Terms added sequentially (first to last)

63 1193.80

3 60 430.11
3 57 148.11
o 48 Godh moded : most devana. explamen

ve:j S\‘ﬁnl nt-

From thiy, can vt null vs. domp 5 Jomp vs. femp + o< 5 temp + N vs. tomp + conc + YempFonc



Logistic Probit Interpret Logistic Example Software Residuals Computing Issues  Design Poisson Modeling Contingency Tables via Poisson
[e]

00 000 [e] 00000000000 000 @O
(o]e]

Poisson Modeling

GLMs with log link are often called log-linear models.

AT&T 1988 soldering experiment : R data solder in package rpart, n = 720

skips:
Opening:
Solder:
Mask:

PadType:

Panel:

number of defects (solder skips) on a circuit board [response]
amount of clearance around the mounting pad (3 levels)
amount of solder (Thick or Thin)

type and thickness of the material used for the solder mask (A1.5, A3, A6,
B3, B6)

geometry and size of the mounting pad (10 levels)

each board was divided into 3 panels
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Code

library(rpart)

plot(skips~.,solder)

solder$Panel = as.factor(solder$Panel)
summary (solder)

fit = glm(skips~., family=poisson, data=solder); summary(fit)
anova(fit, test="Chisq")

proc genmod data=solder;
class opening solder mask padtype panel;
model skips = opening solder mask padtype panel /
link=log dist=poisson typel type3;
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Poisson Modeling: [njj ~ Poisson(\;;)

Assuming independence:  nj. ~ Poisson(\;.)  where Ai. =}, \;

nj ~ Poisson(X;)  where A\; =3 Aj

n.. ~ Poisson(\..)  where \.. =37, -\
AiX

s
)"J_ AL

~ In()\;j) = — In()\..) + In()\,-.) + In()\.j) =p+ o+ ,3,‘
Looks like a two-way ANOVA without interaction!

Multinomial Modeling: Assumes n.. is fixed. ({n,-j}wj) ~ Multinomial (n“, {pU}ij)
Assuming independence: (pj = p;.p.j ~ Aij = E(nj) = n..pi.p.j

~In(Ag) = In(n..) +In(pi.) +In(p,) = p" + oi + 5;

Looks like a two-way ANOVA without interaction!
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Poisson Modeling: njj ~ Poisson(\;j)
Independence: In(A\j) = p+ ai + 5;
Saturated model: In(\j) = u+ o + Bj + (aB)j
Is there an in-between model?
Linear-by-linear association: In(Aj) = p+ o + 5 + yujv;
uj, vj represent ‘“scores” eg,u=i—2 vi=j—25
Agreement: In(\j) = u+ ai + B; +YI(i =)

Example: Results of rating the same 236 units by two different raters on an ordinal scale
from 1 to 5.

Rater 1
Rater 2 1 2 3 4 5 | Total
1 10 6 4 2 2 24
2 12 20 16 7 2 57
3 1 12 30 20 6 69
4 4 5 10 25 12 56
5 1 3 3 8 15 30
Total 28 46 63 62 37 236
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Generalized Linear Mixed Model (GLMM)

LM:  E(Y)=Xp3 LMM: E(Y|a)=XB+ Z«
GLM: E(Y) =g }XP) GLMM: E(Y|a) =g Y XB+ Za)
® Y isnx1, observed

e X is n x p, known covariate matrix

B is p x 1, unknown fixed effects
® Z is n x g, known covariate matrix

® ais g X 1, random effects, where a ~ N(0, G)

g(-) is link function and g=1(-) is inverse link function
GLMM: Var(Y|a) = AY/2RA/?

® R =1l as default

* A=diag(wih(p), ..., wah(pn))

Slight abuse of notation in that functions g(-) and g () apply to scalars, not vectors.
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Standardized Mortality Ratio

Standardized Mortality Ratio (SMR) is a ratio between the observed num-
ber of deaths in an study population and the number of deaths would be
expected, based on the age- and sex-specific rates in a standard popula-
tion and the population size of the study population by the same age/sex
groups. If the ratio of observed:expected deaths is greater than 1.0, there
is said to be "excess deaths” in the study population.

... The SMR is used to compare the mortality risk of an study popu-
lation to that of a standard population. It is especially applicable where the
two populations have dissimilar age distributions, and in cases where direct
age standardization may not be appropriate because the study population
is small, or when lack of age-specific mortality rates precludes calculation
of directly-age-standardized mortality rates. !

Yi: # deaths in region /

E;: expected # deaths in region i, according to age & sex death
rates

.Y
SMR;: E

'https://ibis.doh.nm.gov/resource/SMR_ISR.html
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Source: SAS glimmix “Example 44.3 Smoothing Disease Rates”

Lip cancer in 56 counties of Scotland, 1975-1980

X; is % of employees in agriculture, fishing, forestry.
May be a surrogate for exposure to sunlight.
Does X; help explain variability in SMR; across counties?

Belief: Y; ~ Poisson(\;), so SMR; = %’ has mean /\F:
Model 1: In (%) = Bo + Bix; ~ In()\,-) = In(E,-) + Bo + Bix;

Model 2: In (%) = Bo+ Bixi +Hap ~~ In()\,-) = In(E,-)—i—,Bo—i—,le,-—i—a,-
andom
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data=lipcancer plots=(studentpanel residualpanel);
class county;

loge = log(expected);
model observed = employment / dist=poisson offset=loge
solution cl ddfm=none;

random county;

covtest zerog / cl(type=profile);

covtest indep;

SMR = observed/expected;

SMR_pred = exp(_zgamma_ + _xbeta_);

id county employment SMR SMR_pred;

output out=glimmixout;
proc sgplot data=glimmixout;

reg x=smr y=smr_pred / datalabel=county clm curvelabel;
run;
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R function to use: glmer in package 1me4
Description

Fit a generalized linear mixed-effects model (GLMM). Both fixed effects and
random effects are specified via the model formula.

Usage

formula, data = NULL, family = gaussian, control = glmerControl(),
start = NULL, verbose = OL, nAGQ = 1L, subset, weights, na.action,
offset, contrasts = NULL, mustart, etastart,
devFunOnly = FALSE, ...)

Arguments

formula: a two-sided linear formula object describing both the fixed-effect
and random effects part of the model, with the response on the left of a

~ operator and the terms, separated by + operators, on the right.
Random-effects terms are distinguished by vertical bars ("|") separating
expressions for design matrices from grouping factors.
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Example  Moded Dagfiostice

» Some default residual plots are produced by plot (gw.mod1l).
al Residuals vs Fmedm g Normal Q-Q plot — jza ScalifLocauon p\ofm e o3 IS o\iﬁnncm
251r % oy golw ° 5]
3 | e 3 4 3 |-, " 23
@ [ o No N o A
&34 3. f/ g2 52
{1 % ] e 2 38° ‘ T
al g4 3 s g,‘mm‘h‘ bl
' 70‘,1 " 0.‘1 " 0‘3 7‘2 Jl 6 1‘ é 70‘,1 " 0.‘\ " 0‘3 ° 0 \b 2‘0 Sb Ab
Fitted values Theoretical Quantiles Fitted values Obs. number
» There is a trend in the mean of the residuals, violating independence.
» The QQ plot is close to a straight line, so normality is OK.
» The residual magnitudes seem consistent with constant variance.
> |The 42nd observation has a very high influence on the results.
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© Mpos emuthing
* instangnia) vaizde may help
1.2, Mean model is misspecifie)
* Indevspecitioition
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Partial Residual Plot for chol

Partial Residual Plot for chol

7=5

2x] 1]

Z = (I — Px)(4+ N(0,1))

Unioiased\ |'3

N
Y vs. B

nbwsek ('%

3 tver

library(car); £it-<=-1m(chol™fat); crPlots(fit) fit <= lm(chol"fat+I(1/fat)); crPlots(fit)
Component + Residual Plots
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Simulation Study: Effect of Misspecifying the Mean Model Simulation Setup:
n=25, Xisnx2, ,B:[_sl}, Zisnxl,
Truth: Y =XB+Zv+e = Y ~N(XB+ Zv,02l)
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Covariance misspecified
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1. Assumptions violated:

1.3 (i) Heterogeneity, i.e., unequal variances
1.3 (ii) Correlated errors

Truth: Y =XB+4¢€, e~ N(0,0%2V) = Y ~ N(XB,a2V)
Assume: Y = XB+e¢€, e~ N(0,0%21) toget B=(XTX)"XTYy

Then

E(B) = (XTX)"1XTXB=08  unbiased
E(\A’) = XE(B) = X3 unbiased
E(e)=(I — P)E(Y)=0 unbiased for 0
var(8) = (XTX)"1XTa2vX(XTX)~!
is not as “small” as possible among unbiased estimators
*cov(?, e) = Pa?V(I —P)#£0 correlated
even though YTe=YTP.(I —P)Y =0 orthogonal



Covariance misspecified
00®0000

Possible remedial actions . ..

Use Weighted Least Squares (WLS)
if know var(Y) = ao?, know a, know independent

Use Interatively Reweighted Least Squares (IRLS)
if know var(Y) = f[E(Y)], know independent

Use Estimated Generalized Least Squares (EGLS)
Use Generalized Linear Model (GLM)

Transform!



Notation Inference Problems Mean model misspecified Covariance misspecified Normality
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There is the Box-Cox Family of Transformations:

A A£0 '
Yi(>\) = %‘}| (Yi) A ’ where Y= (Y1Ya--- Y,)t/"
Y In(Y; =0

Denominator and —1 in numerator are just for scaling.

Converts scale back to original units, and thus allows direct

comparison of SSE across models with different powers.

e Fit ANOVA for several values of A, e.g., A =—1,—.9,...,1. Record
SSEM) for each value of .

e Plot {\,SSEM} and determine SSE()

min
® |n the end, choose any value of A that causes

2
SSEM < sSEW {1 4 b2

min dfe

where df, is the degrees of freedom associated with any SSE()

(N

Note: 3" * can be very different as A changes! Also sensitive to X3.
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Other Guidance on Choosing a Transformation

If V(Y)

[E(Y)]?* then transform to Y17 where “Y? = In(Y)".

K=1: V() < {E(YV)P
® Use transformation Y1~k = Y0 = In(Y)
e Great if Y ~ Gamma(« ,6), with V(Y) = [E(Y)]?/«

® Example: Y = survival time of mice subjected to a
treatment

Residual

® Plot e; versus \A/, is fan-shaped

® Possible alternative approach: (generalized linear model



Covariance misspecified
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If V(Y) o [E(Y)]?X then transform to Y1~k where Y0 = In(Y)".

k=05: V(Y)xE(Y)
® Use transformation Y17% = /Y
® Great if Y ~ Poisson, with V(Y) = E(Y)

® Example: Y = # trees in 1000 acres of a forested area

This is a count having a very large (possible “infinite")
upper bound

Residual

® Plot e; versus \A/, is fan-shaped

® Possible alternative approach: loglinear regression model



Covariance misspecified
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V(Y) oc {E(Y)HL = E(Y)}

e Use transformation arcsin(v/Y) = sin"}(\/Y)
® Great if nY ~ Binomial, with

V(Y) = [E(W)IIL = E(Y)]/n

® Example: Y = proportion of 30 trees that are afflicted by a
fungus

® (arcsin good when E(Y) < 0.3 or E(Y) >0.7)
® Plot e; versus Y; has bulge for Y close to 0.5

£

Residual

® Possible alternative approach: logistic regression

Unequal variances often coexist with nonnormality!




Notation Inference Problems Mean model misspecified Covariance misspecified Normality
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1. Assumptions violated:
1.3 (ii) Correlated errors:
® Estimators are still unbiased, but not best.
ANOVA sum-of-squares are still ok
Standard errors are wrong, and hence tests and Cls are wrong
Creates the problem: Time series, spatial, split plot, subsampling
Tests
Possible fix: Estimation procedures other than OLS

How to diagnose?
® Be guided by the type of data
® Look for patterns among residuals over time/space/etc.
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Detecting Correlation

Positively(Negatively) correlated data can lead to standard errors that are seriously

under-(over-)estimated, thus drastically affecting hypothesis tests and confidence
intervals.

Durbin-Watson Test of Autocorrelation

Durbin-Watson test statistic:

strong positive autocorrelation

n 2
ji—o\& — €i—1 e
d:z 22(:,: e2l ) ~2(l—p)~
i=1 €

no autocorrelation

~ NN O

strong negative autocorrelation
where p is the sample correlation between e; and €;_1

® Ordering of the data matters. Looking for correlation with immediate
neighbors, following sequence.

® Null distribution complicated
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Example: 35-year sales history of a company
Y : annual sales, in thousands of dollars [SALES]

X : year [T]

OLS Regression: AR(1) Regression:

Bo = 0.402, with se(fp) = 2.206 Bo = 0422, with se(f) = 3.670
By = 4.296, with se(B;) = 0.107 By = 4.295, with se(B;) = 0.179

proc reg data=sales35;

model sales=t / dwprob; **d=0.821, rho=0.590, pval[Ha:+ve corr] is <.0001;
proc arima data=sales35;

identify var=sales crosscorr=t;

estimate p=1 input=t; run;

fit = 1m(SALES ~ T, data=SALES35); summary(fit)
library(car) ; durbinWatsonTest(fit)

# AR(1) regression:
fit = arima(SALES35$SALES, order=c(1, 0, 0), xreg = SALES35$T); fit
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Check for Normality

¢ Checking for normality ranks low relative to other checks
® Expectation & variance of estimators and sums of squares are unaffected
by nonnormality
® ANOVA F-test is reasonably robust to nonnormality
® HTs and Cls are more affected by nonnormality, but robust in large
samples
® Testing for normality can be overkill. Instead,

® use histogram, with normal curve overlaid
® use normal quantile-quantile (Q-Q) plot and look for pattern!
® straight line ~» normal distribution (intercept is mean, slope is std. dev.)
“S" ~» symmetric, light-tailed distribution
“tangent” ~» symmetric, heavy-tailed dist'n. Unequal variances?
Outliers?
“J" ~~ positively skewed dist'n. Log transformation?
“r" ~~ negatively skewed dist'n
® |ine not through origin ~~ missing important predictor variable

'heavily dependent on sample size!
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® |s e a good choice for testing normality?
® |s it true that eq, ..., e, forms a random sample?
No because var(e)=0%(1—P;) & Cov(e,e)=—0°P;
® internally studentized residual
(R=standardized residual, SAS=studentized residual):

S\/%IDH’ s =VMSE, MSE from regn with all n obs

* var(r) = 1.
* 1i, rj are likely dependent
i & tg4f, (dependent numerator & denominator)
® externally studentized residual or studentized deleted residual
(R & SAS=rstudent residual):
. Yi = Yiu &

S(,')\/]. + X,'(XZ;)X(,'))flx;r S(,') v 1— Pii

ri =

var(r¥) =~ 1.

ri*, r are likely dependent

I & tgr,—1 (better approx than r;) ( dfe is from regression with all n observations)
* reflects large values more dramatically than r; (Atkinson 1983)

L R

ri
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e deleted/Jackknife/LOOCV results: run regression n times, with the ith
observation excluded during the ith run: (Belsley, Kuh, Welsch 1980)
® X(i) is new design matrix from omitting the ith observation
5(2;) = MSEj) is the MSE from omitting the ith observation
No need to rerun the regn: (n—p —1)sj) = (n— p)s* — r7 /(1 — Pi)

~

° ﬁ(i) is estimate of full p-dimensional vector 3 from omitting the ith obs.

® By is estimate of parameter (; from omitting the ith obs.

Y (i) is prediction of full n-dimensional vector Y from omitting the ith obs.
° \A/,-(,-) is prediction of ith observation Y; from omitting the ith obs.
° Y — )A’,-(,-) is called the jth deleted residual

*

® r’ is the t-statistic for agreement between Y; and \7,-(,-):
Y() Yi— Y'(') Yi- Vi

* __
r,-—

—~

Y —
s.e.(Yi — Yig )\/1+X, Xi)"tx] %0 1-P;

1
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Creating and interpreting a normal Q-Q plot:

® y-axis: residual, e.g. r, in increasing order
x-axis: quantiles from a normal distribution

For jth ordered residual, plot {Cb_l [1;31;?1] ,jth ordered residual}

¢ Good when n > 30, better when n > 50. (theory says ok when n > 5)
® ook for pattern

How to correct nonnormality?
| TRANSFORMATION, e.g. Box-Cox |

Make variances equal Address outliers
NV IANAACANANNN
[llustration

Salary as a function of years of experience



2. Dnuswar\_Dth

() Outliev
@) tnfontm)

utliers and Influential data points ...*
® Qutlier: data point that is “unusual” when compared to other points in the
dataset. May not be influential. Can be outlier wrt X (aka high leverage) Or wrt Y.
* Influential data point: has undue influence in that inference can change
drastically depending on whether that single point is included in the analysis.
?
 improved model is needed
® claim that point has other features driving
response that model doesn’t account for
7
 try to fill in gap in X space, then refit

What to do about influential points?
Fit model with and without points. Change in

x  inference?
® Yes : report both results
® No : report results from full set

Outlier wrt X (aka High Leverage Point):
Which data points are far from the centroid of the X-space?
Does a data point have “high leverage,” i.e., large value of P;?
® P; is weight of ith observation in determining ;’, since Y = PY
L ,1-, <P < % c is number of rows same as ith row
* P % only when x;; = X; ,j=1,...
centroid
® model should capture this point well, if it is a good model
® relatively speaking, this point deserves little scrutiny
® omitting this point will cause little change in the analysis
® P; =1 only when x; is far from the centroid

Yi = Y. Indicative of good

,p, i.e., the ith point is at the

® regression line fits the point exactly, i.e.,
model? Not really

® this point may or may not be in line with the other points

® relatively speaking, this point deserves heavy scrutiny

® omitting this point may cause great change in the analysis

o S Py =r(X) since tr(P) = r(X)
B p, > 21X)| ., FLAG as outlier wrt X O
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Hat-Values

Outlier wrt Y:

Is Y; well predicted?
® A “no” answer could result from outlier wrt Y or an inadequate model!
® Recall that r/" is the t-statistic for agreement between Y; and Y;

__Yi- Vi(i) _ Yii)
se(Yi— Vi) s(,-)\/l + xr(X(BX(,-))*lx,

0]

shold of 2 by default

i(i):
_[vi—¥
Isi)V1 = Pii

Sthdantized resrvo

~~ FLAG as outlier wrt Y’

reg in applies thres too low

® Bonferroni: |rf| > tg,_1, 2~ FLAG as outlier wrt Y’
We're actually maklng inferences about n residuals!
Must make adjustment for multiple testing.
® R has a function namel :outlierTest

for this car

Influential Data Points:
Examine effect on ,B, Y (also possible: ¥;, 3;, Var(B))

o Effect on 3, Y: Cook’s D(istance)

By~ BY (X™X) By, - B)
o x)s?
Yo-"(Yo-Y) computin|
r(X)s?

|D,- >1 (some use > 0.8) lw FLAG as influential

Di > Fr(x).n—r(x)05 [ FLAG as influential

® proc

It = too low

threshold by defau

reg in SAS applies a different

Cooks  dlistane.



Unusual Data Points Computational Instability

3. Computational Instability, aka Multicollinearity:

® Do different predictor variables provide redundant information?
® Affected by choice of values for predictors X1, X, ..., X,

Definition:

Multicollinearity exists when two or more of the predictor variables
used in regression are moderately or highly correlated.

1 4 401
1 6 5098
X=117 70| r(X)=3
1 8 7.99
But solving X7 X8 = XT Y will be highly unstable!
NEEDS:

® Recognize when multicollinearity is a problem
® Take corrective action



Computational Instability
oe

Diagnosis ... s thy § V9 ‘W‘Pm“#
Indirect:

® ook for symptoms, although they can happen for other reasons:

® [arge changes in B when predictor variable is added /omitted

B\j has a sign opposite what is expected
Model has significant F but many non-significant t tests
Sequential SS and partial SS are very different
Variances of 3; are very large
High correlation between BJ and @. This may violate simple interpretation
of regression coefficients as measuring change in E(Y) when a given predictor
variable is increased by 1 while all others are held constant.

Direct:
® Large (simple) correlations between predictor variables
® Large variance inflation factors

e Condition number and indices, i.e., scrutinize structure of X7 X (won't cover)



Computational Instability

0000000

Variance Inflation Factors (VIF) ...

® One for each predictor variable in the model, except intercept
* VIF; =
other predlctor variables (including intercept)

° 0< Rj2 < 1implies 1 < VIF;

° Rj2 ~ 0 implies VIF; ~ 1 and Rj2 ~ 1 implies VIF; very large

Xj involved in linear dependency with other non-intercept predictor variables

R = R? ~ 1 = VIF; very large

var(B3;) = o2 - VIF;1 : Jjth variable L all others = VIF; =1

FLAG: VIF; > 10 indicates problem, VIF; > 30 severe problem
Unaffected by centering predictor variables

® Detects overall collinearity problems with more than just the intercept
AR

RQ, R2 is coefficient of determination from regressing X; on all

No direct indication of:

® number of linear dependencies
® which other variables are involved in linear dependency with X;

Tassumes centered & scaled predictors



Computational Instability
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Possible Corrective Actions ...

® Drop one or more of the correlated predictor variables
® |f you decide to keep all predictor variables in the model:

® Avoid making inferences about the individual 3 values, and don't try to
determine “relative importance” of the predictor variables

® Sacrifice unbiasedness to get smaller variance ~~ Biased Regression:

® Principal Components Regression (PCR)
Partial Least Squares Regression (PLSR)
Ridge Regression

LASSO, ElasticNet, etc.
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Example: Cigarettes [dataset FTCCIGAR.txt]

Can we model the carbon monoxide content of cigarettes as a function of
their tar content, their nicotine content, and their weight?

8 15 : o, cr%é e
Y : carbon monoxide o
content from cigarette SRR A
smoke [CO] e
X1 : tar content of cigarette | g ¥
[TAR] 5
X5 : nicotine content of I os 1o s 2
. NICOTINE
cigarette [NICOTINE] "
X3 : weight of cigarette o ] o oS
[WEIGHT] 0o LT
” > WEIGH1'I'O "




Unusual Data Points Computational Instability

888000 6608000
proc reg data=cigar plots=none; proc reg data=cigar plots=none;
model co=tar nicotine weight /vif; model co=nicotine weight /vif;

Analysis of Variance Analysis of Variance
Sum of Mean Sum of Mean
Source DF | squares Square | FVvalue | Pr>F Source DF | squares Square | FVvalue | Pr>F
Model 3| 49525781 | 165.08594 | 78.98 | <.0001 Model 2 | 462.25639 | 231.12820 |  66.13 | <.0001
Etror 21| 4389259 | 209012 Error 22 | 7689401 | 349518
Corrected Total | 24 | 539.15040 Corrected Total | 24 | 530.15040
RoOt MSE 144573 | R-square | 09186 Root MSE 186954 | R-Square | 0.8574
Dependent Mean | 1252800 | AdjR-Sq | 0.9070 Dependent Mean | 1252800 | AdjR-Sq | 0.8444
Coeff Var 11.53906 Coeff var 1492200
Parameter Estimates Parameter Estimates
Parameter | Standard Variance Parameter | Standard Variance
Variable DF Estimate Error | tValue | Pr>|Y | Inflation Variable DF Estimate Error | tValue | Pr> | | Inflation
Intercept | 1 320219 | 346175 | 093 | 0.3655 0 Intercept | 1 161398 | 444663 | 036 | 0.7201 0
TAR 1| BBx] 024224 | 297 | 00007 | 2163071 NICOTINE | 1 @ 124473 | 995 | <0001 | 1.33366
NICOTINE | 1 @ 390056 | -067 | 0.5072 | 21.89992 WEIGHT | 1 [ 005883 | 502395 | 001 | 0.9908 | 133366
WEIGHT | 1 [ 013048 ] 388534 | -003 | 0.9735 | 133386




Unusual Data Points Computational Instability

000 00
000000 0000800
proc reg data=cigar plots=none; proc corr data=cigar
model co=tar weight /vif; plots=matrix(histogram) ;
var co tar nicotine weight;
Analysis of Variance
Sum of Mean i i =
Pearson Correlation Coefficients, N = 25
Source DF | Squares Square | FVvalue | Pr>F Prob > |f| under HO: Rho=0
Model 2 | 49430638 | 247.15319 | 121.25 | <.0001
co TAR | NICOTINE | WEIGHT
Error 22 | 44.84402 | 203836
Corrected Total | 24 | 530.15040 co 1.00000 | 0.95749 | 0.92595 | 046396
<.0001 <.0001 0.0195
TAR 0.95749 | 1.00000 0.97661 0.49077
Root MSE 142771 | R-Square | 09168 <0001 <0001 0.0127
Dependent Mean | 12.52800 | AdjR-Sq | 0.9093
NICOTINE | 0.92595 | 0.97661 1.00000 | 050018
Coeff var 11.39618 <.0001 <.0001 0.0109
WEIGHT 0.46396 | 0.49077 0.50018 1.00000
Parameter Estimates 0.0195 0.0127 0.0109
Parameter | Standard Variance
Variable | DF | Estimate Error | tValue | Pr> |t | Inflation
Intercept | 1| 311433 | 341620 | 091 | 03718 0
TAR 1 gB04T8, 0.05904 | 1362 | <0001 | 1.31726
WEIGHT | 1 l 042287 | 381209 | -0.11 | 09127 | 131726
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000
000000
The CORR Procedure
Scatter Plot Matrix
co TAR NICOTINE WEIGHT
o
5 "@co o,
R 5 o
o} o S S0 o
o &° % BRI
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Using R ...

> fit = 1m(CO ~ TAR + NICOTINE + WEIGHT, data=FTCCIGAR)

> install.packages("car")
> library(car)
> vif(fit)
TAR NICOTINE WEIGHT
21.630706 21.899917| 1.333859

> cor (FTCCIGAR)

TAR NICOTINE WEIGHT Cco
TAR 1.0000000 0.9766076 0.4907654 0.9574853
NICOTINE 0.9766076 1.0000000 0.5001827 0.9259473
WEIGHT 0.4907654 0.5001827 1.0000000 0.4639592
CcOo 0.9574853 0.9259473 0.4639592 1.0000000
>

Recommendation: Drop nicotine from the model.

-(Jram R* & Rladjuﬁ’
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Recall: Some resiials

® Is e a good choice for testing normality?
® Is it true that ey, ..., e, forms a random sample?
No because var(e;) =o2(1—P;) & Cov(e,e) = —02P;
© internally studentized residual @
(R=standardized residual, SAS=sTudentized residual):
= ﬁ s=VMSE, MSE from regn with all n obs
* var(r) ~ 1.
* 1;, 1; are likely dependent
* 1; & tas, (dependent numerator & denominator)
® externally studentized residual or studentized deleted residual @
(R & SAS=rstudent residual)
Yi— \7,1.)

s/ 1+ (XX @) %]

e
sV1—Pi

var(rf) ~ 1.
17, 17 are likely dependent
A tgr,—1 (better approx than r;) ( df is from regression with all n observations)

17 reflects large values more dramatically than r; (Atkinson 1983)

© deleted/Jackknife/LOOCV results: run regression n times, with the ith
observation excluded during the ith run: (Belsley, Kuh, Welsch 1980)
. X' ) is new design matrix from omitting the ith observation
® s() = MSEj;) is the MSE from omitting the ith observation
No need to rerun the regn: (n— p —1)s2) = (n — p)s* — r2/(1 — P;)
* By is estimate of full p-dimensional vector 3 from omitting the ith obs

By(i) is estimate of parameter 3; from omitting the ith obs.

Y (i) is prediction of full n-dimensional vector Y from omitting the ith obs.

Yi(iy is prediction of ith observation Y; from omitting the ith obs.

Y; — Vi is called the ith deleted residual

o 17 is the t-statistic for agreement between Y; and Vi(;:
Yi-Yiy Yi— Y Y-V,

se(Yi= Vi) sy 1+ xi(X{X @)% SoVI=Pi

=

o,

GLM _Dingnostre
1.+ Demone la @ v dest

2. Resuual

® Several types of resnduals are commonly used:
© Raw or response:

not very useful

2) © Pearson: rP = YA ~ X2 =30 (rP)? very useful for diagnostics
Vwih(ii;)
also —L—— where h; is leverage

NGV =
® + owiance:
0

also —="t—

Toih
Note: The chi-squared statistic X2 and the scaled chi-squared statistic

=sign(y; — i)Vd;  ~ Dm =0, L (rP)?

very useful for diagnostics

%2 /4 are often used interchangeably with the

deviance Dy and scaled deviance Dy /.

2. Influone. ( avoloy (ookS disiawe)

7 New diagnostic measure: likelihood displacement:
Di =2 {tw(@y) ~ tu(@ - 9)}
where | _ is MLE from excluding ith observation. Likelihood evaluated with all observations.

® Predicted values: Jij, response or x 3, linear predictor

k. bmper / Quasi empe. sopuetim
' mn~inegana | hih SE, IR X0.
happows whon 1R Guents,  lge preclrsim  SpAc
many binay \edditm,  small smpe  sie
+ bimeed 1S (Finth’s preduwe) (1o £x)
quitk check + - devance. /A Epov
x~ 4 model &its well
<< 1 possivy overfing
> 1 undofinng | oovdisphrson
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(Genoo\ _Forms & Rules

Defniin £ : C
n 0: ~blod
s yy= 20§ +Ci D] o v oy word frm,
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3©: natwal ( canonizaly pvatmeter
T s Suffaent Statisies

* Asume 0 =9(8) & the camonal porcmeter :
Jowo (g - by Shigpdy = 14

J:eTLsttwe—b(eJ hf:j) d_‘j =1
J\em’etm hl‘j) 0{3 - ebte) \
= Igrr-pe htt\j)d\lj - ebte) 319)=9

> Jpe™Chydy = bie €™ © dontia wit. 8 o0 buth stles
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> ETY) = b79)
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S My ) = (-2t)

E(v) =P

VarCy) = 2P

_iid . ~

®21NPN(/‘:|,1)1$11 Np(ﬂll) -5 %
ViZIET X GIIAD) > M@= (-2t) &
EW=p+2¢

. Varv) = 2D t 4
@ Ui ’I@ ry.P.' ($i)
u

s = I,'-v:\ Ui ~ rklzp‘-(zd?.')

B X~ M) P XX~ K Cpim)

) T e with € < =



Lemow: A & R™ 5 symmere i oo matic wih onk(A) =5 { A= Gor' fa swne maiix
GER™ with 6G =1 md mnkcG) =S,

% |Tem: lex X~ NaGH L) IR A & o symeti and dempobrs Matix Wi ronkcA) = S, Hhon
XAX ~ 'k‘s (5(-/"7\//\)

pof: A=G&' > GX~ Ns(GM, GIG) = Ns(GM, Is)

> XGGX = XAX ~ K (£ MEGM) = XK5(zpuAm)

(_}zav&_ VN YEED)

_‘L ~N(ZL 1)

EX \XB )
VeBRY ~ XomecrpnC 3%
Thoogn : Lex X~ Nagh v) TR A & o symmetiz ond Av idampoomt-  with rank CAv) =S
then XIAK ~ ’X:'s("li/M'A/’\)
Paos V=11 foc V sy £ P.O. > Yi= 1K ~ Np(Lp, Ip)
XAx = X WYLALL'R

= \’IL\LA‘:\/ > Singe. B = LL'AL)'=11AL & sqrrme{-n‘c
= YRY ~ Ls(ZUMBUGM)  pB= LALIAR = LAVAL =L 'AvAL LY
RACTIYY) = LAvAV(C) = Lavay! =
IS tdgmpotent
Wt 4o kenow Yank () = trewBd = tme( LAL) = tae (LLA) =tmd (14) = ok CAv) =S

ths then BX amd XAX e indeperdent .

Conllw : Let R NplMiv) | lex A be o symmetie matix with rank(A)= ¥ let B be
O SYmmerT maiiX uih tankcB)=S. If BUA<=0 , #n XBXx and XAX
e mdepondems .

(odwan's thgwem: Lot Y~ Na(i, 6°Tn) ond let Ai be symmetriz. and dempotent with rank (Ai) =si
Vi=Cloy k). IR TEAL =In, then 33 YAY ~ Lailzmpim),

TEsi =, and FYAY - T YACY (e iwdopordent .

how {0 proof <M Lexr X~ No(, V) and A synmetnz. . tankcA) =S . IR BVA =0 for o given B,




Distoviion relttoniship

MO~ K s N~ G N ~ 7% (Lo
M ~ = 2 2 Xallq
oo, “Tre st ~Fp 5 A ke Ko, Hoo  Fee
swe
Vi = Gaoma(E 2 5 T, Katbid = Koa: (T00)
= Gonon(= =)
e
i Scale (mean) — sale
Zi op(N) = Gamma (L N) 5 W2 0%PCN) = Gamma (1. D
Sale = | [ rmie = Gomman (1L, 32D
I~ e Nosae W :rmie e

iid
S Gaoa( i, ©) = Gomma(Tiar . b) 5 T,;Gaww\(a. b) = Gamma(a, 1)

Poi (M) mdeP. PoicA) . Poisun + PaicA) = poitm+ A)
Foc potimn , tode = Scle =Mem =X\

exP(\’b): wetonw\ (4, [’)) =~ Gorow( |, )
K~ werbull(nb) & Xq/" exp C b™ both scale -\ke .

X indep Y ~ No/1) L\/(' 'vCau@(o, D
Beta( 1, ) = Unifo.1)

n@\%-\omomm\u\p) = SGDW\@W\\E-CPJ




Ineqm\iﬁ%’

PCdEi) < T2 RED
Boducr Tnegualiy e

Ity < WX+ YN (X =vUl < (i< 1yt

pcx>9) « B

VarUO

PUX-EX|>E) <

With equality 4 v tangpnt lne, 4 90) ot EX

E(guM 2 gEX) & ged is mnex 508k ) 2 F(Zoiki)

E(g)) < g(EWY) i# 90D 1T fencave

% Equoliy meex whon :

1. X5 pongmat olmost Swely :
PCX=e) =1 = E@m) = ¢(EL)
2. # i nearC olbre) ovr the nge of
Px) = an+b
aka. § &5 ddponmde aed pomex , then by Taylor expansion

PR) 2 PED HFEDRED fror-odev fonditim in canienity

P (D (X)= D(EX)+ DLEXIKEX)) =1

fov CU V) € (U Var) . <> (B £ EORECY?)  equa iff x=ay



Set Operations
Popprties o Set gpoarims

AUB = BUA 3 ANB =BNA; AAB =BaA
AsB =(ANR) V(B A = AUB)NANR) =ANB) U(BNAT)

Asociatrivity -
AuBluc = ALBLC) > AOBYNC = AN(BAc);
(ALG)AC_ = Aa(Bac)
An(euc) = (ANB V (ANL)
AL(BNC) = @Aur)NCALC)
De. Mogpins [avs »

(AUBY = ASNB ;5 (AOB) = ASUB”

"



Varioble transformation

(jm\ Mephals:
1. By cOF  MGE
2. By pdf [pmf

R 012 +otn) pwbmbihw ( when in R

2. Jacobimn (when in RS )
/(‘- (whon SN changes )
be awne the ronge o pew prdmektns < -Fwn%e,mnqe-r{lo(ols_

3. By ditoution rebtimship leshgni+in

Exmple,

Find the value of the constant ¢ which make the following function a valid probability
density function of (X, Y). And then calculate P(X > 2,Y > 3)

f(x7 y) = Ce_x_yI(OSXSy)

\[i ferpdaty E 4

—X~ oo nY )
=U\§“’°\]’2 Cexgo{xdg P(Xzz.‘lz})=f5 52 2 "!"dfﬁ
° - wzéﬂ(_e-x)lu 0!
= (oo —y_—X\Ud fa > 4y
Soce ce )o 5 S Y .
PRI =Jsae (- te") dy
= jo ce (1"8 )0{5 2y
¢ fr -y =y + 267y
= c(-€”+3€)I7 = 2-(h)e-2¢™
t - -2-3_ v (ad
=c(-0+0+1-3) = 62_b Ze_s ‘a
=5 ¥ 4 =€ +2€
> Y x=Y - 9e°-¢®
© l\fsg
I Ysee

3 =2 x\\y,
P




Problem
When a random vector (X, Y) has the following joint pdf

f(x,¥) = 120xy(1 — x — y) (x>0, y>0, x+y<1)

, find the value of E(XY)

E(XY) = \ﬁ; Xy ?cxg)o\gdﬂ Y
- \fol \S):_’d Xj : lwvg(l—xfj)dxdj xtY=1
=0 J'7 12oR (1-x-y) dndy §
< Ks (1Y
osYy=s1

= Jy{ boxy*dudy ﬁlzo?‘jdxf’j
—j‘f llo?(iljadlxd\j

3 2 |9 - X ,
= J, %7y |5y - J; S CHICY ~Jyrery’ |4
- f Yo (-9~ 3004y — Ho(iy74> dy

-Jju 975 (4o -30(1-Y) - o y) dy
_§5(1—9)5 (lo-loy) o|5

= _ = |'j dt:'_d_ﬂ
O\fj(lg) Y olj ye s
=-lo [ £*crtyde o< yg\

- - *0 - )t ) L
Io‘Ytt (l 2et ) t=1 +zo

= -loJy -2 +t° de
=-lo(3¥ -5 + 3¢y
= lo(g“— 3' + ?-_|)

25

s
=IO(%-730_5+ 105 )

- (\
=) [o( e
_ _llo
~ o5
- 22
- 2\




If a random vector (Xi, X2, X3)T has the following joint pdf,

f(x1,x2,x3) = 120x1(1 — x1 — %2 — X3) /5,20, >0, 3320, x1+s0-+x3<1)

calculate E(X1.X2)
1-x g %4 eas_\ji'vsmﬁ-w'ﬂni
ECXY) = J' f f XY tzox((—x—y-z)alzdjo{;q jasr to iggorie
= \rlwx j”‘gf u %x-Y-2) dzdydx
= [l iox [y (2-xz-vz-22)| 5 dydn
= Joto f'oxyC =%y =XC=X-y) = Y-%-y4) -5 (5-Y) dy iz
=f", |wx‘j’fxg(|—x-9—x+x‘+>9-g +7Sj*jl—‘é(l—1§j~zx—y +x‘+3‘)d3 dn
= Jo 2o X[ 2y XY+ 20y g ey 59 0 xy 4y TXY 3Y Ay ol
= Wt TAYIY + 3T Y -3y

Problem
When a random vector (X, Y) has the following joint pdf

fl,z(X,)’) = 10Xy2/(0<x<y<1)
calculate P(X + Y < 1)

PX+Y € 1) = J*J"Kloxﬂzdw\* ¥
=)0 -* x=3
=Je 57(5 I7‘ dﬁ !
= [= 12 (x0xF - %) dx
=ji"—‘2(7<<1—zx+x‘)u—x) “X*)dx _—

=12 a(x 5x+3x zx“)Ax
o —
- -t



Problem
When a random vector (X, Y) has the following joint pdf

f1,2(X7 }’) = CX2}”(0<x<y<1)

find the constant ¢, and calculate P(Y < 2X)

‘rﬂ %’(‘3) dedy = PCY < 2XK)
=<l I w‘ﬁa - {0 52 15y dxdy S
= ¢ [y f, 7dxdy = 15wy (4 du
=c fiyzrdl9dy
=5 054"y RS P x

2 Z’ 0 = 9 8 5 , Show\ 4\3-4;55 £\ dhe
o lo = dew cut-off
=% ¥ 1 ?

Cc = |5

Problem

When a random vector (X, Y) has the following joint pdf
fia(x,y) = eiyl(0<x<y<oo)

calculate P(X + Y < 1)

1o I-X - =
PCxtY<) = [ \Y £ dudx 3 =9
= pm —x
j O{X 5 Xt4=\
+ -UX) X \
° -€ te o L x
~=x) x |+ =
= - - Io
=-eT-gr+e +\|

0
+
(bl
|-
N
Q




Repammetmization & BLUE
Repprometovizatin
Dofivition ( Repuomewdrizatimd . Lot X& R ok o e

e Inear modehs Y= XB+U and Y=wr +Uh pe ieprometrizating of ean othe-, £
Golery = plewd

Theown = Suppse. (k)= ) | Hhon Fx =P .

Boposition : Ef plchd = l(w) |, thn T & mavia S St K=w$
Slmilmﬂ , ST st W=XT

Theoem - Let colcxk) = colew). W= XT
Suppote. W=XT and ¥ solor +he nomal ety W . 5 when [((X) £ =(Cw)
0. The fied dotn & sesthwols e, he same :
§peyzRoy & *ESRY = werbSuy
€= (1- Py =l Rudy ™
2). (%=T? solves the. norma\ euatins i X
Y= XB = wr
= XTY Sp=Tr N
Thaiem: 12 Ag 5 esimabde M vhe modeh with desgn X, and Y Sohes e, ool
SR I desn w, hen NTT 5 the leasr squa ostietn of N5

Tipaom : 3P 4% & evtintole in desyn 15 hen 853 15 eStimtiable h desn X, ond
its |enst Sum  eftimatec is BV, whoe ¥ & Swinr =W §
N=Wr =Xp
= WSp

n

N
D v =35p



Rememody
Jhis

Constping_modeh
rop Glexh) L elee)
lemmey- Suppse. CER, riz ke ok wl(XdN plee’) =fob .
Thon the folowiy Sploms me. equtivlont-:

o (2o {4)

o (= (9)

o

@) XX+ e =Xy

Thoem: let C R vith yankeed = p-v ad A clec') = fO3. Then:
€O The matix XX+ <'C ¥ pon-shgnlar
@ ($x+ceI Xy uniguely Sobes XX =Xy . cep=0
(@ (KK HCeT & A gmenized o R x'x
&) C(RX Y% =0
6) clxx+e)C =1

Deritimn. The fmcim NB & estmattie in she restriiedl moded i and only if thee emits o

Sadav ¢ ond vectwr ( ’
src.VE(cmyJV:’ﬁm, V(se{P?5=6$ (XP)’( g)(§)=(?)

Resticted Model : Y=xp+U , Ecwd=o , ﬁefﬁ=3'r5=6$
ful) -l v
Theoom : In he testicia model , C+aY is unbisedh v XB £ and ody if 30l
St. N=xa+ PA and c=d'§ .

() E(ctay) (& Nb=dPp toXp
= d’%6 + axp =d’s + aEv)
=A%+ a%p + dPR -dPe
=d'é + Np-d's

= \P




Theoom = IR 6 € cl(P) , hon Hhpo OXEIS on solwtin 40 the RME.
i = ph=6 & b & LlP)

Topuom: TR (4 dlonokes she Pur Gompnent ok o Solutin 4o tme RNES :
By ¢ f[ XX P)(ﬁ) =(x’g)}
(dr‘i) {( P’ o 9 8
Shon CH minimizes QD = 1Y-XBI* owr {PB =5}

Toguom: TR (% doroks she Prr Gomprent o o Soluatin 4o twe RNES -
By ¢ f[ XX P (ﬁ) - [ XY
(dl“‘) {( P’ [o) ) ) ( é
i€ pefPB=83 e QB = QBH) R B also sohes RNE.

Not oy RNE Qivs A LS. Solutim, bnt @& L.3 Solutim MUsT sohas RNE .

Bost- Lien Udoneh Estiraor

* k.o wbned grnote 4ot adniess CRIG

Zouss — Mark
2 + U
\( % 0 QIMCBS- Marl<ov
Ew) =0 Asounmptinn

far (W)= ¢21 -FW sme @ >0

Thpiom _Giaus- MarkayY: Undgr +he. Graus, ~ Morkov axommptivs [imoded + if: X6 1§ extinable,
Jogn NG 15 dhe best ¢ minmam vanans) lingm anbaseh  estintor

R Ko, ¥ eTxxE =),
(Fr any priomsed [hesr extimode, e 090 Wit lenst wriana. 1y the LSE).

Thosemt An wbmsd optiua o 6* & Y'cT-pRY /in-ps




ik odk
Y= x6 +u
Ew) =0
Uarcny = ¢V
V >0 known

\NIVp o YweR”

Theoem (A(TKEN)

So thy S a  Gansy- Marky, Mada)\ (aneqmgnﬂj the BLUE for any
estnable N 15 Nfpas Whee feg € §XVRB = XUy

\ongmopy | Tngoem : The estivain ty is BLUE fa- ECYy) i and onlyif +y

this =

ngndmed_vith oll _wibinsed _estinatoy & 26r0 D)

(ol Undew she Aitkon Modeh, ty is Bwe fa Bty i (¢ e olx)

Thgsem: Undev the  ditken wiedeh, Mo is e BILE Lo estmbe Np iff
@8 st VX= XQ)




Bayes prior & posterior
——

Prior Dtmn Bsterior

Botan Bermowli Bern

Bern Bomiz| Beter think prdmevs 1 these me. p.

Detan Geametriz. Betn with Betn o<x<( tanthuors fits pell.
Deton Neg- Binomen\ Retn

Gamron Porsson Gromma

Gamma % pongniia Gamma, ey k. mwoving Jhe. Betn

Gromma Gramma Gomma,

Divicnlex MalHnomiz \ Diriohlet—% leomber these tuo  Seprately
Diridhlet Hypovgeomerric Diridnlex

Noma\ Norma\ Normat\




&)n wgo»mz, Ordor$

Deterministic or
Notation Stochastic? Formal Definition Intuition Example

Oo(b,) Deterministic 3C > 0s.t. a_n \leC
$begin:math:text$

o(b,) Deterministic P 0as, o Negligible compared to s n=o(n?)
0,(a,) Stochastic Ve>0,3M>0st. X_n >Ma_n) <
$begin:math:text$\Pr( \varepsilon$end:math:text$ for
large n
o,(a,) Stochastic E Small compared to @, with If X, ~ N(0,1/n?), then
X,/a, =0

high probability X, = o,(nV2)



Anoil\m_vg £ CamPleAe.heSS

Shon _anoilawy by -Fm

Locotion fomily © Saie. il @ lootim & Scale. family &
Joxsmr = £, cxm fx0=Th(F) 6 sale  foma) = = £ (X2R)
NGid™) with known ¢* oxponental N (Mia™)
Logoca. with Bxed sale Chi-ggune with @ Comnenyy
Crudhy with fixed saie Gromma wirh fixed shape Laploa.
Uhriform (M, prt) Welonl\ wih Pred suape Logistie
log\’sh‘o with fixed swle Uniform (m-c.& Mt cq)
Lowsn_family ondillpw)_Stistze ©

* Sample Sprdrg - ( Xez3=Xeo « Xz —Xaay » =+~ , Kemy = Xen-n )

* Somple @nge : Xeny ~ ch)

* Sample vanance. - Sn = (I.  (Ki = %a

Em\g 1.

Lotatim \eam[bj. want o Shaw Ximy =Xeo  Ocilaw ,

Show X-8 ~ exp() imovnt of 6, this Kiny=0)~(%w =8 i§ also inuwant ¢ ©
Thws Ky ~Xo 1S anolaw

Scale. frmily_arudloy mﬁsﬂs )
Xcin)

SﬁlW\P\C oo ( X(_;;: U Xam B —— mediam
. The t-shiSes : £= R mbmgr € = Xap)~ X

locin - sle. fomily, awdllan) SIntistizs (3)

. i o Xy =K L Xeny =X
hWY\ﬂ\\\Ee()\ SV\YY\?‘% Gpﬂ\dn\g : (XL:; Xy ' XZ:)) —Xu()

© Sampe e /Sﬁmp]e, sd. ¥ » X(n) Xco




Unoyenesc o poev SeeS) X e i da prod  (-mpleienesS .

Exnge 1
Xi A Poisgon A 5 TXi ’i‘;f)zoismﬂ( nh>
-m (n set
Ee) = 2, 0 € g1 = O

O

t
> 52 guey O

> IR EPe = o
3 25 o ve by wizweress of power Seves
> ged)=o0 vt

Exungle. 2.
Xi 4 gxpCNd I?\Lr@ Gomma (1N - N)
E@God = [T 900 2 e ¥ o

> oy x*'e™dx = o
o PO - ~ -
x> Tawrex)EMdx= 0 > [T 30ExHE A -0
R > (2 g e ™dx = o

T, 5(708—)\7(: o) 9\%\/\#\9& V=
Thwe gy =0




Asymptotic Theory
Cramér -Roo Lower owd (RCLB) «— odlled Comné oondlieim

Undor vty Gordons , dhe. inese. of the. §iser mfomatin, (5 atimined -

1. Modeh § ooty specifred

1. The loglirathocd is suffaonty smoh  (eq- difenimde wp to Swond odder)

3. The {owr infmi i positire defivite and fiite.

% The ME exits ord petsiiont and Hhy estmalr
5. The saore functe hos mem zoo and fie varane / RAKEs the CRLB
FUiolotim: Seoe. hoas 4o be o v Partm o an_unbired ety

Bur fo- M(E ormavs e CRUB aluous met aynpoieally.

Wilks Theaom agumptims

Ho: Pe ©o Hi: 0 ©O\BOo0

SPeeeo L(0D @ wik§
A= sv‘Pgeen.L(gj —2!5 A L e 5k =dm(@)~-dm(Bo)
Asswmptims

1. 9€¢© unmuely detormie he distributin of damn
fexion # fx10.) iR 6146
2. Twe paameder Bo must lie in te intoir vf prdmster sma ©.
2 on the bounday , the limtting distioatin mght not be dii-guae .
3. Regwlahy o Likelinood
Twia difpentode. h 6
Well - defivedk | vion-strguir Fehe  infamimn
Exppinfin f derivtier ox¥s and can be intdvnge wih inegatin
A, l—(l‘ﬁﬁ Sample. n s to ue Wik
5. MLE behnidr  Gonsiont & ayympiotiz. nomo|
Bue B B 5 (B -60) 25 (0, T6e)
b. NesteA Modek
Oo ¢ © <« gnswes the likelitoad v 1§ nell-defied
Violattme?  Zewo ~mPotim Pomon & mixtme. distiontivn
Camot vost {or Ho:T=0,1 5 Ho: P= anyvale & Co.13
Can 45t for Ho: T = gome walne & Co. 1>




Low of lowge, umbop ((wek)
Snppese X A~ D> | E(X) =M, VadX)=a* <00
T X B om

fonegena. in Probalbiling
POXe X\ > 2) — 0O can be sme sailw-

— -
1. B Y o\e-?mm‘m

2. Use WUN (¢ Bt host khoo ot least maan & varna)
3. 12 mar(Xn) =0, and lim E(Xn) =a | then Xn 2> o

Xn~ =2
PCI%Xn-al >¢) < E

Xn* —2XnA + "
whon can'e gt ik £ |-(, z EC¥n & 2

21
use ECL- 1 or Uar(1+1) | oo, = E(Xn2)—2ECmMA + A" — Uar(%n)
. xS
We piriiling metha | e
22.
- O
( & .n !. I ‘! ~,
*Xn 2% i€ Fxn —Fx Ux
1. Contid\ Limi+ Theawom (CLTD
2. DeMm theagm
d. Slntskyy thgaiom ( uswily CLT + WLLN)
L. By defitin
(entm) Limit Theovom
1. Fwr sampe menn
x; A4 EXD =M  UndXi)=g*=<s0

(X -m) 2 N0, a?)

2. Fw Some esHmniv

E(Gn)= 0o or bms = 0(\?'%) 6n 56, g <o
VR (6 - 60) 25 NCo, o2




Dok, oot

R(x-M 45 NCo i 62)
Consdlor gend diffuenide ond o) 0
VA g ~gyw) 25 N( o, gm’s™)

Slutdeyy Thootom

Suppoe Xo X . XD c | thon
* 0% + bYn 2> aX tbe
* XnYn 2, cX

(ontinupus_Mappings_Theorem
TXa)be o K-dimonsmal gndom veutrs . Let LE R >R be o corthuous -FMCHM.

Then Xn B x D gXn) B 9X)
X 2 % > gxXn) $gcx)
I x> gxm) <5 gx)

Pramples

Let's define Y, £ min X;, where X, -, X, L F(x;0) = e,y (x) then,
Y, 250
n—o00
PCIWM9)>2)
= p (|mnXi~6] >¢)
=pCmnXi > £1t8) as 9<AKi
=p( X >gt 0)"

= (fom, €7 V)’

n
= (89(‘ e”) l:e>
(69 e—(€+s> )ﬂ

-ng
- e —> 0 0 NOK




Question

If Xy -+, X, "7 Beta(1,), what is the pdf of the limit distribution of
1/0‘(1 — max X;)?

1<i<n

PC n=Ci- MAXKi) ¢K) < <OF
£

= P |- MKXi < 7ﬂ-rf°‘) K~ Botal 11 ) .
= PC ki 7 1=K Pacry = BETS m &)
= - PCmn X € \=-%-Nn ) = o axy -
= 1= PCKi & L7 e B = % ac-xS T dx
= (- (1-(I- va)*)” = =X S
= = | = (=X o<x<)
X%
— |-e
_x*
L) = 2% C-€ )
_29 an
Sdh X _7(6\ ot
=0(-e " )ax



cheat sheet

Low & ool oxpeotwtim (and reltel defitins )
E(Y) = Ex(BCYIX))
= PCX>x)ECY|X>X) T P(XexD ECY] X¢%)

= % pCY>t) de

Joaw £ ol vaviani,

Var(Y) = Ex(var(Y(x)) + Uan (BCYIXY)
= Ey(Y= EM)(Y-EY)
ev(X1YD = (o (X, ECYIXD)
= E(XEMIX)) - EWE()

Dyl Expanom -

- ‘ o gl (r-m~

geR) = Do K1

2 gD 2 g@d + 19 (K-  whin 4¢> enex md diffrentidoe

(reometnz. Swmmmtm :

="
Citx) = T Fer A7 with Ke ¢1, 1T

(]

o NSNS =X = So X7 with XeC-(, 1D
__ n
X =I5 00 with X €11

n o0 paS
e’ = im(+%) = I% &

n -1 ac1-¥") 00 - A
Tmar' = - 3 L ar'’ = \-v
Z’_j‘(z\‘-\) =y

Usefll Bopoty  Givon 2 ~ E@)sm, al)=v 5 E(ZAZ) = H(AV) +pim
E(2Zh2) = E((Z-Mm)A(ZM+m)

Ve to Pnd the  =EC(ZMWARZM) +MAEM) + (Z WA +mAn)

XpPotntizn G@ DR = E((2-wAEZ-m) + 0 +0 +mAn

OF SE n foms = E(tlaa(Emw'AGmn +mim

thet Y AY = E(tma (A m) t AAM

tr( E(AGEM(EMY)) wmAm
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Goma, fundtn TCR) = (A-DTUAA)

= CK-1)!
)= {m -
3 ! (LS
)=z Nz) = 3
ZztIt +tM
hxe)= &
a
Me\'F' P det
= -2¢
Mxie) = Cl-2t) &
Ex= pt2¢
VX = 2p+ U P
Thesion ¢ Grachewt)
n nxn
aber” AcR
T
@. Vea'b =q
T,
0. Vo bAb = Ao + ATb =CA+ATb
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Sequontial Swm of Squae. TR towapt = P
TABLE 7.1 ANOVA Table for Sequential SS R
Source df Projec\t_ily SS noncentrality
bo r(Xo) P, R(bo) (20°)™" (Xb)" P, (Xb)
b, after by F(X7) = r(Xo) Px; — Py, R(bo, by) — R(bg) (20%)71(Xb)T (Px: — Px,)(Xb)
bjafterbo,....bj-1 r(X) —r(Xj_)  Px; —Px:,  Rbo,....b)—Rbo,....b;-) (207 (Xb)T (Px; — Px; )(Xb)
by after by, . .., by rXp) —r(X5) Py —Px; R(bo,....b) — R(bo,....b1)  (269)7H(Xb)T (Px — Px; ) (Xb)
Error N —r(X) I-Px y'y — R(b) 0

Total N 1 ¥y

(207)7! (Xb)” (Xb)
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