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confidence interval

General Rules :

① Interval estimator (random) :

P(OE(EnEr)) = 1 -2

② Interval estimates (fixed) :

Ce
,

En) has actual numbers

confidence interval forM :

Cone sample - known 02 (

Assumptions : 0 Y.
... Yo did

② ECYi) =M : Var2Yi) = 52

Yi ind (M , 82) = may not normally distributed

③ ELT) = M

SELY)==

-m Yo2
cone sample - unknown +3

-innosresmall I takin 2



(two sample (M.M2) - independent)

Assumptions : 0 Samples from 2 diferent populations

GrouDY Smalaindependent

② Yij In NCM, (2) Yzj ind NLM2 , 822)

⑨ EL Ti
.

- T2
. ) = Mi -Ma

for this case , only

E -Consider unknown 02

- Satterthwaite

If 5P # & :

191/n .
22

+
1522/42) approximate

If JF = 52 2 :

! itsn .
- 1 n2 - 1 same type

(n :
- 1) Si + CH2-1)Se2

(T
.

- Y2 .) Ital
, nith2-2

·Sp Sp =
(H , + H2 -2) pooled SD

(tho-sample (M. ,M2) - paired data)

Assumptions : 0 Samples from 2 measuments of same unit

Group 1 : Y..
.. - Yin

3Nestendent
Group 2 : Y - -· Yan

② Yij In NCM, (2) Yzj ind NLM2 , 822)

⑨ EL Ti
.

- T2
. ) = Mi -Ma

var(I .

- Y. )=-2Cr(..2. )

-> a+ 0

Let Wj = Yij - Yzj ,
thus WjNM , -M2 ,

Tw

in I tak
, n- 1

· SECTi
.

- T2
. )



-Confidenceinterval for it :

(one sample)

Assumptions : 0 Yi = 0 (failure) : Y: = 1 (success)

② Y.
... Yn are did

③ ELYi) = : Var(Yi) =(1-+)

⑦ ECT) = : SECT)=

#d-typedCI (from CLT) Xe know how to impliment this and know its drawbacks

When r 15 large .
RIP T ,

and p= 15 normal :

Plzar * (PC- P

Issues :O can include negative values or > 1 values

solution( ② doesn't work at p = 0 or p = 1

③ no coverage guarantee , especially when h is smaller.

Wilson-Score Intervaleat least remember the name and know thit15 better

PEIR IEPPIE1 + za/r

(two sample - independent (

Assumptions : O Samples from 2 diferent populations

Group-a 3 mutually
independent

② ELYij) = I E(Yzj) = T2
.

③ E(P, -Pc) = I , -Ta

SELP, -P2) = Tll-TH2

(P1 -P2) #Ea PIC) +
Pall-P2)

12



Confidence Interval v . S. Prediction Interval

* The confidence interval provides informative about the means of Y at a girm X = Xo.

· Expect 100C1-23 % of intervals to capture Bo + B, Xo

· P(BotBiXo[Cl) = 1-d

* The prediction interval captures Y at X = Xo
.

Y = Bo + B, Xo + E is random and independent of the collected data

· PLYPI) = 12

· Both Y and PI are random quantities .

7 Var(Y- Y) = var(y) + var(Y) = r
- (1 + (n+*)

-
assume Y and I independent ,

because Yn+ , 15 the future data ,
Y from observed

Y - Y of of MSE :

Y- Y ~ N(o , var2X-Y) =
Secy-y) ~Ere -

df total : n - 1

af Reg : 1
1

Y - Y

=> P(-+n2 ,22 MSEll ++**) < turn
,
212) = 1-2

=> Y [tnr· MSEll+****)! 1

↳ if already have varcy)
, simply

"

+ You"

T hit example 15 in SLR case only , but the idea remains the same , that 17 :

1

with varcY) known
, varcyn+1) = MSE + var(Y) .

Shortest CI: Minimum width for fixed coverage

UMA CI : Highest accurate coverage (dual to UMP test)

UMAUCI : Best unbiased CI (dual to UMPU test)

Example : CI-Type Notes

Normal mean with known variance Equal-tailed interval UMA : Shortest

Normal mean with unknown variance t - interval UMA unbiased

Exponential mean shortest interval not symmetric UMA , not equal tail
Binomial proportion Clopper-Pearson interval unbiased , not shortest



Hypothesis Testing (1)

General Rules size

Ho true Ho false

Reject Ho I Typelenor (2) Power (1-B)

Accept Ho correct Type It error(B)

P-value

Probability TCO) takes on a value as or more extreme than Tc) assuming Ho.

Pirotul quantity
A pirotal quantity is a function of the data and parameters that has a probability
distributin that does not depend on any unknown parameters.

Suppose X-f(x : 0)
, then

< Q(X , 0) 15 a pirotal quantity > the distribution ofQ does not depend on 0

& Then can Construct CI using the distribution :

PC DiStoa75 * Q(X , 0) = Distros) = 0 .95

=> P(() P () ( = 0 . 95

Critical value

The critical value is a quantile (cutoff point) of the pivotal quantity's
known distribution.

e.g. 2005 , Edfe , 0 .05 , Xdf , 0 . 05 , Fdfidf2,
0 .05

Risk function of a decisio rale : dix) : Y, Xmedian , Su

Rd(0) = EoTL(d(X) , 01] the expected loss of decision valed(x) when O 15 true
·

Estimation : Rd(O) = Eo[(dix) -013] iRdIO) = Eo[Idix)-01]

Testing : Rp(Q) = Gloss(fulserjet) Po(P reject Ho) ifOf o

Loss(false accept) Po) ↑ accepts Ho) if O-2
,

= loss(false reject) To (0) ifOEo
-E loss (false accept)11-Tues) if Of c

#p(o) = Pp)Prejects Ho) = Eo(P(X)



* Goodness of fit test

pdf
Ho : Observation follows * distribution

%x=[E*#group-#parameters- Oi I I
pinf

⑧

-;; I
* independent test

e.g. testing proportion the same across periods :

Ho : pi = Pa = PS

x2 = [
; [j (Eij-Oij)

~

Ex-5-1) With Eij = Min
Eij

7test /F-test

Yij = M + Bi + Eij i = 1 ..... 4.Bi = 0

Ho : B ,
= By (eB = 0)

① Find Bi cusing restricted normal moder or Lagrangian method 3.

② Must know B - By ~N ( . ) under full

es SSE = z(Yi -Y, (2 N -P

T= Muse Min - In rankx
T of of MSE

SSR = z(Yi - Mi
2 I p - /-

-

F = y= F
, n -rnk(x) SST =CYi - Yi)

2

N -

[Tsince only one &

x = 100 I
B = /) under Ho : B = 14

Inference on variance of two populations

Ho : d = G Hi : 0,

2

= 82

Recall SECH . -17/02 ~Xin. -1

SECHa-1/82 ~Xn2-1 larger various

A
Under Ho , Sich .-1)/(n . -1)

=
Si

522
~ Fn

. ... nat

S (H2-1) /(4 .
- 1

↓
smaller variance



Lack of fit test

R*: unique X value --

p : number of parametery ~
~

~

U : total # of observations

Ho : There is no lack of fit Mi = PotB, Xi

n
*

= 6 -

p = 2

Vi = 2, 2
, 2 , 1 ,

2
,
2

-n - P SSE/(H-P)

LofF Error ((T.

- Yij) SSLF/(n*
- p) MSLF/MSPE <

Pouna#)PureEn n Em I I(Yij -Yi
.
R SSPE/(n-n*

)

n - 1 & (Yij - T. )

↓
I (Yij - Y

.. )2
doesn't relate to fit uniquex ↑

replicates



702 Appendix A Tables

Table A.2 Coefficients ci for orthogonal polynomial trend contrasts

v ! 3

Trend c1 c2 c3

Linear −1 0 1

Quadratic 1 −2 1

v ! 4

Trend c1 c2 c3 c4

Linear −3 −1 1 3

Quadratic 1 −1 −1 1

Cubic −1 3 −3 1

v ! 5

Trend c1 c2 c3 c4 c5

Linear −2 −1 0 1 2

Quadratic 2 −1 −2 −1 2

Cubic −1 2 0 −2 1

Quartic 1 −4 6 −4 1

v ! 6

Trend c1 c2 c3 c4 c5 c6

Linear −5 −3 −1 1 3 5

Quadratic 5 −1 −4 −4 −1 5

Cubic −5 7 4 −4 −7 5

Quartic 1 −3 2 2 −3 1

Quintic −1 5 −10 10 −5 1

v ! 7

Trend c1 c2 c3 c4 c5 c6 c7

Linear −3 −2 −1 0 1 2 3

Quadratic 5 0 −3 −4 −3 0 5

Cubic −1 1 1 0 −1 −1 1

Quartic 3 −7 1 6 1 −7 3

Quintic −1 4 −5 0 5 −4 1

Sextic 1 −6 15 −20 15 −6 1



Hypothesis testing in 57704

Lack of fit test using deviance < this it particularly used in GLM.

If Yi has a distribution "close to normal" with link close to identity",
ther Pair-p-

(Approximation will not improve as 1 increases

↑ e.g . consider n 15 the # of groups ,
where ni 15 each group's size .

Wand di t instead of R
.

Bin (Mi , Pi) , i = 1 . .... R

However
,

this should only be applied
Q

- Ho : model M fits the data Hi : Ho is not true when having normal/identity. If used

When ni 15 reasonably
this test under overdispersion (Bin/Poi

large , can use this > Reject if > X-p,, TypeI-error ↑&may perform poorly
when expected counts are small .

Solve 1 : Fit a quasi-binomial/quasi-poisson model to estimate dispersion

Solve 2 : Use a bootstrap or simulation-based test

Ho : Model Mo with greg . parameters Hi : Model M (with Mo-M) with p reg . parameters

T =
DMo-Dm d

, x need to distinguisht distribution or 4
4 P-q-underHo

distribution ,
and distinguish related of.

EC) = m-p =Mom
= A ,

when I large , we should concer :

Reason 1 : Inadequate linear predictor (underspecification) ↓
think this

Reason 2 : Over-dispersion Varsyi) > 4 wihMi) where 4 it given by family
· Grelated Y.

... In may lead to over-dispersion

also see

next page Asymptotic Wald Test Y - N(XB , 02])

Ho : AB = m Hi : AB=m- Var(E) = o (XX)" = var(B) = E(XX)

Tw = (AB-ms' (A)FTA')"(AB-m) ~ Xank(A)

Ho = h(0) =0 Hi : H(0) +o

Tw = hi' (H) e"(H(Os')N) ~*Trank(A)



Test for Correlation Oxy
Pxy = E((X-MX)(y-My)) rxy =n

&x rY

(i) id N() , (** x y
dy

Ho : Pxy = 0

Hi : Pxy to z= log) **)N([log))i
RR : /Z (n-3)) -Zai EN10 , )

- Test on K(0) with Once
Ho : ha) = o Hi : Mos to e .g. h(0) = AB-m

This part was
anco

rxI

discussed under : H(0) =
20-uxa first partial derivatives of U(0)

LMM setting , · is MCE
, G is MLE under Ho See here

,
unlike the -statistics

,

but may apply e
on other occasions

· when Ho is true ,
all of Tw . The

.

TsX thedf 15 not dfError ,
but rank (A)

.

· Wald statistics : var(E)

Tw = Mischies Los"His"his
only involves oVar(h()

· Likelihood ratio statistics :

TLR = -2 [triy) - eliy)]
· Score statistics :

Ts = S1)[()"S(0) < only involves or

HT termininologies

1
. A teet O 15 Consistent if powerch) = #, (d) -> = >as data sample size ↑

2. A test of 15 unbiased ifp10)p(0) Preject /Ho)prejen
= Power = I always

3.When Ho : 0 = a ; H : 0 = b , try using Neymam-Pearson Lemma show MP (LR)

When Ho : 0 = a ; Hi : 0 > a or Oca
, Using Karlin-Rubin Lemma show UMP (11)↑↑

Both show IR monotonic with test statistics TCX).

when Ho : 0 = a ; H 1: Of a cannot use Neymann Pearson/Karlin-Rubin Lemma
.

-
cannot be two-sided Hi



One-sample HT

CHT for M - knowe #2

Ho : M = Mo
Y-M

↑ NIM ,
E = /

~ N10 , 1)

z =
Y -Mo

- N(MTM1 N(o , 1)
/Th

Hi : M -Mo
14

RR = z - C = Za remember when in favor of Hi , rejectHo.

Hi : MMo RR = zc = - Za S Thus rejection region dependsOr H, .

Hi = M +Mo RR = Z< -Ear or >Zar

CHT farm- unknown 02

Ho : M =Mo

~ NIM ,N-tn- ,

Ho M-Mo
7 = Itr- non-central parameter x = T/Th
-

Hi : M >Mo RR = z > C = En-1
, 2

Hi =McMo RR = ZxC = -En, a

Hi : M + Mo RR = z - In+ 1 . 22 or > +n -1
, 212

Fact : TCE) ERR iff p-rahe < 2
.

P-value

Hi knome &2 Unknown o
-> CDF for -> dist .

M - Mol- E(z) = )- z) 1F(n-1 ,
o(t) = F+n-0[t)

-S

McMo

f
#(z)

!
Ftn- 1

,0 (t)

M +Mo 2(1-EZP) 2(1-Feno(t1)

when<Small (whenzlarge ,
E 15 small

,
the et. a

when 121 large ,
1-E(z1) small , this reject



CHT fo +)

Exact test : < uses binomial dist.

Yid Ber <Tt)

Ho : T = To

Test statistics : Y = ZiYi ~ Bin (n , it)
n-y

P(y= y) = ()+(-π) y = 0 , 1 ... in

Hi :>To p = P(Yzy/tto)
n-j

= Ijy(5) no <1- TO) ? P-values : maybe no closed form for KR.

Hi : It < To p = P(Y = Y1Tto)
n -j

= I (5) To" <1-to)
a

observed y

Hi : TTo K = 9K : P(Y = K/to) [P(Y = Y/tto) < means more extreme

p = p(Y = k Itto) =P(Y= KITT)

Approximation :

p = 2 · minSp(Yzy/tto) , PCY-y/tto)3

Rao-score test : < use CLT

Ho : = To
P-To ENCO , 1 P = YZ = To (l-To)

r
= be careful for that part

Hi :T > To RR : z = Za ↓
same as one sample
procedure with known o 2

Hi :< To RR : Z < -Za

Hi: F To RR : -Zar NZTZar



Two-sample HT

<M ..Mc independent
Y ,j NM1,54) Yzj NIM2 ,

wal indep.

Y.

- T2. NCMI-M2,+

Ho : M.M2 = Do

Test Statistics Null Distribution Alternative Distributio

5 = 52 (T - Yz -80) tu
,+H2-2 [n

, +H2-2 , X

: Sp = (Mi1)S + (H2-1)S22

SP+2

(H , +H2 -2)

52 = 522 (4 - 72 -20) (Si/ , + S2/, ]2

&
tr tr, : V =

(S/+ 12/
H2 - 1

(M,
-M2-Do) (M ,

-M2 -Do
x =

+
-

+ + + ↑=+

*
wher Yij , Yzj paired , Wi = Yij - Y2j , Ho : M.Mz = Do

Test Statistics Null Distribution Alternative Distribution

(M
.

- Yz.

-Do) t
n - 1 tn- 1 , x X =

(M,
-Mc-00)

1 Tu/
Var(wj)

N

Citi
, It independent (

Yij Ind Ber(iti) Yaji Berce) indep
Ho :,

- Th = Do

Ho Test statistic Null Distribution

P .
- P2

#,
-Tz = 0 z =

p(1-P) + m
NCo , 1)

P.
- P2 - No

T. -2 = 00 z =

p,(tP1)
+

Pall-P2)
N(o , 1)

Hi H2

n , P, + HzPz
P =

n, + H2
Estimates IT (if Ho : iT , =z

=)



Power & Sample Size

Power = P ( Reject Ho 1 H 1)

(Power for M ,
know 52) znx(M-Mo/ ,

I

=> z-NIO, i

Hi RR Power P(z > za(M >Mo)

M >Mo zZ2 1- (z2-)=-z) = P)
Y -Mo

- za(M -Mo)/Th

McMo z-Za 7Z2-MM & = PC
-Mo

_Miza-MM(>Mo)/M
1

C M +Mo 1ZkZa-2)+-) = 1- ELZc- E
↳ effect size M-M.

power depends or

the alternative distribution

&: what 15 the smallest sample size to achieve 1- B sample size .

e .g. 1- Elza-Mn) = 1- B Ezz- ) = 1 - B

#(z-M)1B #(z2+) = B

Za-Me ZB z+ Ep

L Z

M +Mo = (ER

spower for m , unknow (2) Recall when unknown str , x = M

Hi RR Power P(t > tn- 1 , 2 /McMo)

↑ M >Mo Extre
, 2 1- Ftn-x (tn-1 ,d) - =P> tn- , a (M -Mo)

McMo EC-En+ id Ftn-1 ,x(- (n-1 , a) = 1 - F(n- 1 ,x(tn- 1 , 2)

↑M +Mo (t) >tn+, 212 1- Ftn-
, x(tn-1 , 212) + Ftn-1

,
x ([n -1, 212)

(Power forM,-M2 , independent and paired

indep : 1 =
M .

-M2-Do

+
Mi -M2 -Do

pais : 1 =

Twit



(power for it

① Power for exact test hard to derive (no alternative

② Alternative for Rao Score test 15 Normal.

Recall z =

#(1-T))P-To ~N(1Tol -TToll-To)/R

Thus
,

Z . Mo(l-To)
-

I - To
~ N(0 , 1)

π(l- T) π(l-π)

# > To +Za

Hi RR

!
# #To1 > Za

# To Zc-Za

-FP(z > Z21TT > To)

= P(Ph > z2(ππo)
To (l-To) # -To

= P(PTTU (1-+)
->za-

= - Elza-v)
-Za [

Hi RR Sample Size
2

# > To +Za (EaTITO) -EB<1-iT) (
# To

2

# To Zc-Za (Zaroll-to) - ZB π(l-T)(
# To

2

# #To1 > Za (E2/2IO) -EB<1-iT) (
# To

-Z) = -B

#) = B

ZuZBfZ - ZB#
Mo(l-To)

Za # -To
-Z Fl

2

(Zaito) -EB<1-

iT)) R [
# To



Multiple Testing

Family-wise Type I error rate :

1
. PCReject Hois /Mi =Mj) = 2: < individual test error rate

2 . Ho : M ,
= ... = MK 15 then

2 = p( Reject Ho" /M.
= .. . =Mr) < family-wise error rate (FWER)

[P(RejetHo" (M ,
= .. . =Mis)

= (2)di I'm not sure if this (2) 15 firm ,
became <K-1) tests are enough,-

but that may considered as Dunnett method (2)

Global F-test

Ho : (0 = 0

① LO 15 estimable

② rank(L) = rank(X) - 1

③ Ho true=> O In the null space ofL

SSR/rank(L)
F = SSE/(H-1-rank(L) Whatever Lit used , the test statistic 15 the same (for global F)

# Frankix)-1 , n-rank(x)

Global F- test : Full v.s. Reduced model

SSECHo) - SSECHi) SSECHo) - SSECHi)

F =
dfECHo) -dfECHi I

lank(X) - 1 > since global
SSECH: dfECHi SSECH:) (n-rank(X)) < full model

General Rules :

1
. If all pairwise , use Tukey
2. If pairwise with control

, use Dunnest

3. If general LO with small rank (L)
,

use Bonferroni < when #of test it small

4. When in doubt
, useefe

5. When improve Bonferroni ,
avoid massive rejection , use Benjamini

6
.

Fisher does nothing



Fisher

28 I EdfE , 212 * SECtE) < obviously incorrect

Bonferroni

to I tafE , d/2p
* SECtE) p = (2) k : # of parameters involved in Ho.

Benjamini
-

-> two-sided p-value
-

-> rule
-

Tukey
->

l'8 1 &t,dfE ,2 SECCE >

Tukey HSD :

q =
1) =>

e .g. ITi.

- Yj .
/

SECEE) MSE)ni + j)
↑

This Tukey HSD follows a studentized range dist

Scheffe:

No interception : => e .g. one-way ANOVA

28 I Crank(x) -1) Frankexs- 1 , n-rank(X) , d Seco,
- -

of regression df Error
: # of estimable functions
(independent) X max-rank (1)

Intercept : < e .g . full rank linear model

2/nkx)Frankexs
. n-rankxs, a

SECCE) or maybe ANOVA with M ?
u

for full rank linear model : (1+p)

Sum of square in testing

R (B , /Po) = SSR(Bo
.
Bil - SSR(RO)

R (Bz , B3 / Bo
,
B1) = SSR(Bo

,
B,, Ba

, Bs) - SSR (Bo
,
B, )

= R(B, Pc , Ps/Bo) + SSR(Po) - (R(B, IBO) + SSRIBO)

= R(B, , B2 , Bs/Bo) - R(B, /Bo)



Hypothesis Testing (2)

F-test

Y ~ Nn(XB , 52In) SSE

=> XB - N(XB , OX(XXX)
Y'(I-PX)YeXn-r

02
1

independent of 82= Y(1-PX)Y where IH-rEnr

Theorem : In the model Y-Nn(XB . (In) with unknown B , 02.

FLE = IXX)9xy and Since = Y'(I-PX)Y

Definition :

Ho : KB = m H : k'B +m = estimable if Kit GkX's

where Kl
**S

with rank (k) = s and every column of K 15 in ColcX's

The general linear hypothesis is said to be testable iff KB 15 estimable and

has full rank.

Lemma: If KB is estimable
,

then H : = k'(X'X(* EIRS* is non-singular.

H = k(xx)9k = k'(xX((xx)(Xx)k = k'(Xx)
*
xw

rank(w) < minSu . SS < S = lank(k) = rank(XX(xx)k) = rank(Xw) < Lank (w)

S = rank(w) = rank (ww) = rank (H)

Example : Y -Nn(XB , (In) KiB -N)kiB ,
83 k'(X'X(9k) = N(kB

, 03H)

ECKB)M = KB -MEN10
,

83H)

(ki-MYH"(kE-M) /82 2 xs

Lemma: Let Yn-Nn(M , v) and A
,

B symmetric matrices. Then if BrA = 0,&YAY and yBy are independent.
5 y'(I- PX) y ~ Xn-r

consider v = +
-
1

, A = <I- Px) , H = k(Xx(9k = LL'
, B = Lk(xx1

*x0

Because BVA = 0 , BY 15 independent of YAY.

F = (KB - M) 'H"(kB-M) /05 1 Fsint
Y'(I- Px)y/87(n-r>

I Fs
, n-r (2'ou (KB-M >

/

CKB-m)



Likelihood Ratio Test

20 : = 9(B , 02 : kB = m , 0x3

2 : = 9(B , 04 : BEIR", 0 >03

LR :=
** SL(B

,
043 BY 15 from RNE

maxSL(B ,T
(* ) =(

P(LRC 1Ho) = G H

Example :

C
LR = (lY-XRj with p = k

,
5 = m

Reject Ho if (QC or IQ-Q
Q(B)/(n- r)

This is actually an F-test
.

Theorem : If ki3 is estimable and BH 15 part of a solution to the RNEs with

constrain KB = m
,

then

Q(BI) -R(E) Q = (Bi - B) xx(BM - B)
② = CKE-my< K'(xX19k['<k- m)

③ = (k'B -m)'H"(k'B -m)

Proof : &(B) - &(B) = 11 Y-XBIR-11Y-XBIR
= 11 X(B - Bi)112

0 = (B - BH)'X'X(B- BH) > = (E-BHK
= (B - BM)'XX(XX(XX(B - Bit) = (B-BE)'k HYK (B- BH)

> = EH'k'(xx)9k ③ = (kE - m) H" ( kB - my

=C
1

OHH

* in + k = XY

XXBM = Xy -K
- xX( - (H) = KOH

k(XX)9XX(B - BM) = k'(Xx)9k
1

OH = H"k(xx)9XX(B- BM)

-

SESince k = XA



Corollary : I KB is estimable and 13 solves the normal equations ,
then the BH component

of a solution to the RNE solver
,↳. XXB = xy - 4)k(Xx(9k)'(k1 - m)

Proof: H solves XXB + Kn = XY
1

XXB = Xy - KOH

= XY - KH"k'B- Bit
= XY - KHCk'B - m)

Theorem : If PB is a system of linear independent ,
non-estimable functions and Bit

is part of a solution to the RNEs with constraint PB = S
,
then

& (B) = R(Bit) and O = 0 .

Proof : XXBM + POH = XY ,
and so PO = X(Y- XBY) ECOL(X) -

Since PB is non-estimable
,

okps10kx's = 503
,

which import= 0.

↑ has full column rank , so it must be the case that N = 0
.

Thus
,

(3 =(xX( = xy3
So that QCE = &(BH)

Confidence Internal & Multiple Comparison

Single estimable function XB

Ye Nn(XB ,
RIn)

,
recall if XB 15 estimable , then for B = (XXX ,

XB ~ N1)XB ,
83 X(Xx)

*
x)

.
If we estimate > With Fr =rYCI-Px)Y ,

then Xi - XB
t=XX)9x

~ Tur

thus P(It) Thrak) = 1 - 2 < <I coverage

CI = XBE[XB-Turaixxx ,
XB +Turaixx*x]



Multiple estimable function AB

Consider s estimable functions ,
XIB

, 12B, . .
.

,
XsB

,
then let1 = ( X, . - XS)

/

with linearly independent columns
,

x =
Xi

AB ~ Ns (AB
, FXCXX(1) I~ I

In this case
,

↓(aj<jB = bj) = 1-2
, FjzE1 , ..., sh

,
where

aj : =NB-EnrakxXxx
bj : =B +trakxxx

However,

P(jAjBbj3) [P(a , = A !By b , ) = 1 -2

↳
Thus ,

need to adjust family-wise Type-I-error

Theorem : Let SEj3 be a collection of measurable events ,
then :

(i) . P(YEj) < IPCEj)
(ii)

. P(fEj) = 1 - EPCEjY
P(yEj) = 1 - P((fEj)4

= 1-P(YEj) by DeMorgan's rule

= 1- [jP(Ej) by (i)

① Bonferroni method : adjust level of each interval as C/s.

Bonferoni method interval :

↓(aj<jB = bj) = 1-2
, FjzE1 , ..., sh

,
where

aj : = XB-ErraicasXX*x

bj : =B +ErraicasXX*x

P(AB = bj3) 1- P(39; -AB < bj39
S

= 1 - 25
= 1 - 2 C I coverage 12



② Scheffe method Construct a confidence intervalFlinear combination uB of the form
T (u , <) = UBIc . 82 VLXXAU ,

where c 15 such that PCUABETCn, c)) = 1-

CI : ULLB I S - Fs , n-r ,
a·UX'(XX)AU

↑
rank ofMetMSEdf

③ Tukey method

Replace tursiz by gener,
astudentized range distribution quantile
->

IsEdf
↳

# of parameters involved

↓(aj<jB = bj) = 1-2
, FjzE1 , ..., sh

,
where

*

aj : = XB-Atknriaxxx
bj : = XB + 9nr . c·xx)*x



Hypothesis Testing (3)

· decision rules d . & d.

· d , dominates d2 if Rd . (0) [RdzIO) FOER
,

with
"

< "for at leastme O

· If d it dominated by some rule
,
then it's inadmissible

,
otherwise it's admissible

.

· d 15 minimax ifmax Ra(O) = MiMAXR

Bayes Decision Rule prior distribution of 0 with pdfcpmf) <(0) .

· Bayes riski5 the expected loss :

ra(4) = ElL(d(x) , 01]

= EnTETL(d(x) , 01 10]]

= Eg[Ra(O)]

race) = E[(d(x) , 01]
= EIE[L(d(x) . O) IX]]
= ET expected posterior loss for dix)]

· Bayes decision rale :

d : Vag(4) = mra(q)
*

may not exist , may not be unique
· Bayes estimator :

(19 , x) = ca - oi = da(x) = EJOIX = X]

((a , 0) = 19 - 01 => de(x) = median [01X=X]
· Bayes testing :

① prob of H, true

Expected posterior loss : ↑-
ETL(a , OllX =X] = Gloss(false accept P(O =, IX= x) if accept He

Loss(false

reject
P(O =Mo(X=X) if reject to

-
Bayes test :

prob of Ho true

EPa(x)
=HoifDo

A unique Bayes rule w .r .
t

. a general loss function 215 admissible wort. .
L.

↑ admissible => & bayes rule = LRT



Parameter Estimation

Simple Linear Regression
Quantities :

Covariance :

CorLXi . Yi) = ECXi-Mx)(Yi-Myl) => Cr(Xi
, Yi) = n2; (Xi - * /<Yi- Y)

correlation :

Cor(Xi , Yi)
=

EXXi -Mx)(Yi -My))
PXY =

TxdY 2xTy

~=EMM previous pages

=> uxy = n; (X) <Y
L

SST & SSR :

[Yi-Y = Z+Sumsanregressm:comparesfitedvalueen
as a

-

SST

↓

2(Yi - Y)2
: MSE

(n - 2)

OER1 : is the % of total variation explained by the simple linear regression model.

R2 = 57G(rxy)
in SLR

Residuals & assumption check : Ri = Y: - Yi

Assumption : Ei Id NCO, 04

O independent assumption is impossible to cheek. ① Lask of fit : when see a trend in residual
*

② Residual constant variance. see previous table for this

③ Normality assumptio

normal - left skewed ...
right skewed

observed .

quantile
...... - :

.

A .....
-

-

A

" ......
light tailed heavy tailed bimodal

-.........x ..... -
↑

A ....

/

Theoretical quantile



Estimatory

Yi = Bo + B, Xi + Ei Eid No , +2)

· Bo = T - B,

SE (B) = MSEln +
zX** (2) <

think these as

=**= )SECB") = MSE(zc*i
-= (2)

> Y = Bo + BXo

SECY) = MSECn+) I think here we do NOT assume Bo LRY

> Y = Bo + BYXo + En+

SEC) = MSE) i +z) < see PI in previous pages

Linear Regression v .S. Penalization

Cordinary) Least Square Regression :

B = argin <Yi -Ro-BiXi - ... - BpXpi)2
1

> B may or may not be uniquely determined

> Convention : Center & scale all Xji -> <Xji-Xj . )/Sj

then Bo = = IVile really like centering y as well

7 > Bok = <XX + x])XY ↑
YirYi -7 with no intercept column in X

Ridge Regressio
linear in Y # = arymin I (Yi-Ro-BiXi - ... - BpXpi)+ XIB

> Balance : minimize SSE v.S
.

make length of electe close to 0
. B,

... Pp

> Highly correlated predictor variables :

- OLS slope is not well determined
,

have large variance

- shrinking B.... B; to close to 0 helps determination! > Convention : Center & scale all Xji -> <Xji-Xj . )/Sj

Yir Yi -7 with no intercept column in X.

> Bridge = (xX + XI) X'Y = shrinkage estimator

> Bias = Elpridae- B) = -X(XX + XI)"B ~ use Sherman - Morrison Woodbury formula
M

> var(Bridge) = r<XX + XI)"<XX)(XX +XI)" - biased regression



Lasso Regressio
# = arymin I (Yi-Ro-BiXi - ... - BpXpi)+ x[, /Bj)

> Convention : Center & scale all Xji -> <Xji-Xj . )/Sj <

Yirt Yi -7 with no intercept column in X.

> Blasso has no closed-form as 15 non-linear. &> closed fam expressions exist in a special case :

D ② ⑤ V
-> centered & scaled predictors , when X has othonomal columns : XX = I

(sip) : B = (XXYxy = E = X, Y

LS(K) : keep K predictors have the largest impact Best subset

· varces) equals( · order (Binlz ... /Bl ... /Byp
· if(Bijs) = /Bis) report Bijs ; Otherwise

, report 0
.

· Bj(( = Bj · 1(lBj) = /BYK) = hard threshold
~ ridge

- XinB proportional shrinkageRidge (1) : Bj

Lasso (x) : Blasso = Sign(Bj)(11j1- X) +
= sign(Ej) max((1)-X , 0) < soft thresholding

slope : Fi

-I
X----.

3,mil
·---- x

> Properties

Setting : Multicolinearity or p relatively to m

Must center and scale predictas
·

shrinkage applied to partial slopes ,
not intercept

scaling matters for predictions i ( ?)
M

As XT
, B + 0 : bias + variance ↓



Ridge V .S. Lasso

Ridge : 1
.

B >O not exactly o

( use when most predictors are important

2. Shrinks to similar coeficient estimates when correlated

Lasso : 1 .
B - 0 equals to0

(implicit variable selection)

can be misleading and arbitrary + various adaptations exist

2. Picks one and discard others when correlated
* Both useful for prediction
* Both require care when focus15 estimation of B.

welookat e

fietbecause
significant coefficients

ridge does not

Shrink to exact o

shrinkages to 0
no shrinkage

Smooth



Reallocation of correlated features

j

Es
( + ) I

has kink

Elastic net Regression
normally X is selected ↓ is specified

↑ ↑
E = argmin gSE + X(dllBl + CBI



Dimension Reduction

Convention :

Center and scale prediction
1

. X-space > Wspace (can always be done)

2. columns of w scores) = linear combinations of columns of X

3. Glumns of W is ordered by relevance

4. Drop inelavent columns to get Wigs-space
5. Perfum back conversion Wigs -> X to do inference·

Pricipal Component Regression (PCR)

· chooses "scores" without info Y

↓ ↓

2nd 2nd

Partial Least Square Regression (PLSR)

· choose "scores" with info



#MultipleLinear Regressio < weird I don't see much interpretations , but typically
Fixed value : Yi = Bo + ];jXij = XiB are normal Xcoefficient means curvature .

ECY(Xi) = XiB

var(Yi (Xi) = rxi' <xx'x : =0
&

hii = Xi<XXXi leverage (21 for models with intercept

Fitted rector : Y = x* = xxxxy = Hy

E(Y(x) = XB

Var(Y(x) = 0H

Residue rector : v = y - Y = y - Hy = <1- H) Y

Fact 1 : Zivi = 0 F models with intercept

Fact 2 : Residuals are always correlated
· var(r) = 0

2

<I -H)

· complicates abilities to check independence assumption

SSE = <Y-Y)Cy-Y) = Y'CI-H)Y

Example : Let Xo" = (1 X , X2 ... Xp) be values of prediction

Prediction value : Yo = B: + IjBjXj = Xo' B is normal

El Yo(X0) = XoB

Var(Yolxo) = 02Xo'cxXxo
1

CIXOB : Y 1 tak,n-p -1 THE Xo'CXXYXo

PI XoB : Y I tak, n-p -1 MSE , It XoLXXY'Xo

Coefficient of Determination : R2 = S = 1- S
*

Hower ,
R2 always increases as adding predictors.

SSE/cn-p - 1 + ↑1adjusted R2 = 1 - SS+ /<n - 1)

= 1- (1-R2)
< R always

*

Adding predictor that does not increases R causing adjieto decease
.

*
However

, adjR
*

15 NOT great for small dataset .



Model Specification

Over-specification

True Model : ECYiX= Xi)=Xij ox OR Ecy(x1) = X , 0,

Oracle estimator:= (X, X , I'XiY
E(E) = O ,

var() = O(XiXi)

EIMSEl = 8 = n - (1+ P1) DF

Assumed Model :

E(VilX= Xi)=Xijj or ECY(X . x) = X , 0 , + Xz02 = Xo

Estimator : 8 = <XX)"XY
E(E) = (xX5xx0.

= (8)
Varios = OCXX)" < 2<XiX17'

ELMSE) = 2
2

=> n - <Hp) DF E dfError ↓ Fstatistics ↑ Power ↓

Summary: Both Type I Error & Type I Error are correct.

Under over-specification , correct variables have sEt p-value 4
.

ECIT

Over-specification causes problems as well :

Inflating Estimate Variance :

For assumed model (with p + 1 parameter) :

varij) =zX,in
* 1- R- R-squared value treating X; as response

↓ and other predictors as covariates .

variance for SCR with Xj

R - 1
,
variEj) ->

↓

Variance inflation factor (VIF) : 1 - R;
VIF < 10 means predictors are highly correlated

, complicating ability to

identify which variables are important

① model is overly complicated
② The predictors are naturally correlated

~
I . Global F- test p-value↓ but individual p-value ↑

2. Normally when colinearing happens ,
VIFT p-value ↑



-

Under-specification
-jTrue Model : ECYilX= Xi)=Xijxij OR ECY /X1 . X2) = X . 0 , + X202 = XO

Oracle estimator : d = (xX)XY
Ess = O

Var1E) = OcXX(
+

EIMSEl = 8 = n - Cl+ P) DF

Assumed Model :

ECYilX= Xi)= Xij+Oxij OR ECY(x1) = X , 0 ,j=P,
+/

Estimator : 8 = (XiXXY unbiased when
X1 , X2 areE(E) = (XiXixi (X , Q,

+ X 202 = O + (XiXxiX2O2 Ortho normal

varios = <XiX,)
ECMSE) = 02 + Q(X2. 82) > 8

2

= n-CHP)) DF < DF

Summary: Hypothesis Test TypeI & Type It errors unpredictable. ECIX

Replication and lack-of-fit can detect underspecified model
.PeerromybeuseT



Linear Mixed Model

1
. In linear models

,
we consider r. v. E: account for the variability in the response not explained

by the predictors.

2.i = Yi-Mi

& = (I- X(XX)x')Y ~ N(0 , (I- x(XX5x)82)
I

3. Model famula in "R : y -axb + X : z + 1(V'2) - 1-

ab = a + b + aib

X = E : interaction of X and !
2) v2) : linear predictor depends on v2 Model : y = a+ b + ab + xz + v 2

- 1 : no intercept

4. Kronecker product notation :

I
↑

Is) = 1 f)=I
55 Linear Mixed Model :

When estimating r , Type 3 : used to see the tests ,
but I <O with MSR <SE

M

ML : Provides &F 20 , biased

&(ML)=CY-XECY-XB) negatively biused

REML : Provides & 20
,
E(8) = TE

&ACREML) =p(Y-XB)'(y-XB) unbiased

In SAS : proc mixed

In R : /mec for nested

Imerc for nesten & crossed

< /(a) : random effect for a S see following pages

(1 la : b) : random effect for ab interaction (slope)

<
&eN(O , G) notation in this case

E- N(O , R)

S Cov(G , 2) = p



Imer ( . ) usage and output 15 crucial

covered in &
Lecture E

+ "random group"random intercept/subject = group
"

note E
+ "random block (sites"

Consider under Aitken model
,

want to test on B but notice E-NIO , V

1. If V is known
,

Ho : AB = m inference 15 exact
,

2. If V = &D with D known
,

use REML method

3. If V = &D with both 52
, D unknown

,
use Type #I + Satterthwaite/Kennard Roger find of

Situation Estimation Inference Method
-

V know GLS/Aitken Exact F - test/Type I

V=rD , D know REML (for 52) TypeI with known D (?)O SV = &D, both unknow REML/ML TypeI + Satterthwaite/Kennard Roger
↑ ↑

REML for 82 Type III used for testing
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Example: Fabric

Two types of yarn are used to weave fabric on looms. In our shop, we have three
operators and we randomly select three of our many looms. We will have each
operator run each yarn type on each loom twice. The order of these runs will be at
random.

The operators are the only three we have who are qualified for this type of
weaving. We are interested in comparing them. The yarn types are the only two
available for this particular application and are di↵erent in the type of fiber used.
The looms, on the other hand, are of no particular interest and are thought to be
representative of the collection of looms that might be used for this type of
application.

The data are average puncture resistance measurements made on five randomly
selected spots on the cloth. Here are the data:

Loom 1 1 1 2 2 2 3 3 3

Oper 1 2 3 1 2 3 1 2 3

Yarn 1 59, 52 43, 42 48, 54 88, 86 68, 71 83, 82 50, 43 35, 30 42, 41

Yarn 2 81, 73 54, 56 59, 68 99, 98 82, 88 98, 94 63, 62 49, 40 60, 56
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proc mixed data=fabric; class loom operator yarn;
model resistance=operator|yarn / solution;
random loom loom*operator loom*yarn loom*operator*yarn;

proc mixed data=fabric method=ml; class loom operator yarn;
model resistance=operator|yarn / solution;
random loom loom*operator loom*yarn loom*operator*yarn;

proc mixed data=fabric method=type3; class loom operator yarn;
model resistance=operator|yarn / solution;
random loom loom*operator loom*yarn loom*operator*yarn;

proc mixed data=fabric method=type3; class loom operator yarn;
model resistance=operator|yarn / solution ddfm=satterth;
random loom loom*operator loom*yarn loom*operator*yarn;

proc mixed data=fabric method=type3; class loom operator yarn;
model resistance=operator|yarn / solution ddfm=kenwardroger;
random loom loom*operator loom*yarn loom*operator*yarn;

3 samemodeamethod

-

-

-

-
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REML: b�2
L
= 406.43, b�2

LO
= 0, b�2

LY
= 0, b�2

LOY
= 0, b�2 = 12.06

ML: b�2
L
= 270.84, b�2

LO
= 0, b�2

LY
= 0, b�2

LOY
= 0, b�2 = 10.23

type3: b�2
L
= 407.90, b�2

LO
= �1.60, b�2

LY
= �1.97, b�2

LOY
= 0.875, b�2 = 13.19

type3 w/ Satterthwaite or Kenward-Roger:
b�2
L
= 407.90, b�2

LO
= �1.60, b�2

LY
= �1.97, b�2

LOY
= 0.875, b�2 = 13.19

E↵ect ndf ddf F value Pr>F Param Estim SE df Pr> |t|
Oper 2 4 68.31 .0008 O1 � O3 6.83 2.00 4 .0271

80.51 .0006 1.85 4 .0208
96.59 .0004 1.98 4 .0259
96.59 .0004 1.98 7.44 .0096

Yarn 1 2 159.34 .0062 O2 � O3 �11.0 2.00 4 .0054
187.80 .0053 1.85 4 .0040
617.58 .0016 1.98 4 .0051
617.58 .0016 1.98 7.44 .0007

O*Y 2 4 0.60 .5932
0.70 .5474
0.48 .6496
0.48 .6496

need this adjustment
-

for 52 unknown test

-
[

effects only has

the same F value

Y as Type II cas E
the same with

of the same
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Computing . . . SAS: proc glimmix

proc glimmix data=corn;
class pesticide field method;
model yield=pesticide|method / solution;
random field(pesticide);

proc glimmix data=fabric;
class loom operator yarn;
model resistance=operator|yarn / solution;
random loom loom*operator loom*yarn loom*operator*yarn;

** Results for FABRIC di↵er (a little) between mixed and glimmix **

-Fantom- field

pesticide method

- nested

T
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Computing . . . R

• Function lme() in package nlme is very popular, but is limited to nested
random e↵ects.

• Function lmer() in package lme4 can handle both nested and crossed
random e↵ects. It is also newer and better able to deal with large
datasets.

But more structure and flexibility in specifying matrices and is
o↵ered by lme() compared to lmer().

fit.corn = lmer(yield ~ pesticide * method + (1|field:pesticide), data=corn)

fit.fabric = lmer(resistance ~ operator * yarn + (1|loom) +
(1|loom:operator) + (1|loom:yarn)+ (1|loom:operator:yarn), data=fabric)

-

-

This15 nested ,
I think that

# because : there is no outside

random factor : field.

The interaction cannot stand by itself



2/17

Sleep Study Grouped Data Software – R Software – SAS Correlated & Matrices Software – SAS

Sleep Study

Interested in average reaction time for sleep-deprived subjects.

• Before day 0, subjects had their normal amount of sleep.

• On following nights, subjects were limited to 3 hours of sleep.

• Subjects were given a series of tests on each day.

• This dataset is balanced with no missing observations.

Reaction is average reaction time (ms) on a series of tests given each Days

(values 0,1,. . . ,9) to each Subject (there are 18 of them).

Yij : reaction time for subject i on day j

Xij : day j for subject i on day j

E (Yij) = ω0 + ω1Xij expect ω1 > 0

But di!erent people may respond di!erently . . .

E (Yij) = ω0i + ω1iXij
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But di!erent people may respond di!erently . . .

E (Yij) = ω0i + ω1iXij

• ω0i , ω1i as fixed e!ects limits us to inference on these 18 subjects

• ω0i , ω1i as random e!ects allows inference on a broader scale

ω0i → ω0 + ε0i , ε0i ↑ind N(0,ϑ2
0)

ω1i → ω1 + ε1i , ε1i ↑ind N(0,ϑ2
1)

Yij = ω0 + ω1Xij + ε0i + ε1iXij + ϖij

Called the “random intercepts, random slopes” model.

Independently over i , for i = 1, . . . ,N = 18,

i = iω + iεi + ϑi , εi ↑ N(0, ), ϑi ↑ N(0, i ), εi , ϑi indep

Er
- ↓ for different person , effect different
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Clustered Data / Repeated Measures / Longitudinal Data
“Single-level LMM”

Independently over i , for i = 1, . . . ,N,

i = iω + iεi + ϑi , εi ↑ N(0, ), ϑi ↑ N(0, i ), εi , ϑi indep

• i is ni ↓ 1 observed response vector for ith cluster

• i is ni ↓ p known covariate matrix for ith cluster

• ω is p ↓ 1 unknown fixed e!ects

• i is ni ↓ q known matrix for ith cluster

• εi is q ↓ 1 random, unobserved, for ith cluster

=




1

...

N



 , =




1

...

N



 , =




1 0
. . .

0 N



 ,ω =





ω1

...
ωN



 , ε =





ε1
...
εN



 , =




1 0
. . .

0 N





= N↔ , n =
∑N

i=1 ni , = diag{ 1, . . . , N}, i = i
T
i + i

maynot involve all the features

S in the random effect.
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Single-level LMM: N groups (indexed i = 1, . . . ,N) each containing ni
observations

i = iω + iεi + ϑi , εi ↑ N(0, ), ϑi ↑ N(0, i ), εi , ϑi indep

Two-level LMM: N first-level groups (indexed i = 1, . . . ,N) each with ni
second-level groups (indexed j = 1, . . . , ni ) containing nij
observations

ij = ijω + 1,ijεi + 2,ijεij + ϑij , εi ↑ Nq1(0, 1), εij ↑ Nq2(0, 2),

ϑij ↑ Nnij (0, ij), εi ,εij , ϑij indep

• Single-level and two-level LMMs are great for nested groupings.

Not for crossed random e!ects.

• Not happy with assuming vectors of random e!ects are independent?

Use “extended LMM” or “hierarchical specification”:

Replace εi , ϑi indep with ϑi |εi ↑ N(0, i )
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Sleep Study: Software – R

> str(sleepstudy)
’data.frame’: 180 obs. of 3 variables:
$ Reaction: num 250 259 251 321 357 ...
$ Days : num 0 1 2 3 4 5 6 7 8 9 ...
$ Subject : Factor w/ 18 levels "308","309","310",..: 1 1 1 1 1 1 1 1 1 1 ...
> plot(sleepstudy)
> xyplot(Reaction~Days|Subject,sleepstudy)

fit.sleep = lmer(Reaction ~ Days + (Days|Subject) , sleepstudy)
#includes random intercept; allows correlated REs

summary(fit.sleep)
fit.sleep = lmer(Reaction ~ Days + (Days||Subject) , sleepstudy)

#includes random intercept; REs uncorrelated
summary(fit.sleep)
fit.sleep = lmer(Reaction ~ Days + (1|Subject) + (0 + Days|Subject), sleepstudy)

#REs uncorrelated
summary(fit.sleep)
fit.sleep = lmer(Reaction ~ Days + (1|Subject) + (-1 + Days|Subject), sleepstudy)

#REs uncorrelated
summary(fit.sleep)

Yi = Po+ B, Day : + Goi + & , i Dayi + Ei ; GoitEi ; GitEi

Yi = Bo + B, Dayi + Goi + GiDayi + Ei Guildli Ei

Yi = Bo + B , Dayi + Loi + LiDayi + Ei GoidiLEi

Yi = Bo + B , Dayi + Goi + LiDayi +Ei GoitdiLEiI
these there were equinatant
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> fit.sleep = lmer(Reaction ~ Days + (Days|Subject) , sleepstudy)
> summary(fit.sleep)
Linear mixed model fit by REML [’lmerMod’]
Formula: Reaction ~ Days + (Days | Subject)

Data: sleepstudy

REML criterion at convergence: 1743.6

Scaled residuals:
Min 1Q Median 3Q Max

-3.9536 -0.4634 0.0231 0.4634 5.1793

Random effects:
Groups Name Variance Std.Dev. Corr
Subject (Intercept) 612.09 24.740

Days 35.07 5.922 0.07
Residual 654.94 25.592

Number of obs: 180, groups: Subject, 18

Fixed effects:
Estimate Std. Error t value

(Intercept) 251.405 6.825 36.838
Days 10.467 1.546 6.771

Correlation of Fixed Effects:
(Intr)
Days -0.138

comparison between models fitted

by REML ,
lower is better .

standardized residuals : showing the

distribution of model errors <should ideally

be symmetric & centered at 0

- subject differs in

L allow both intercept their baseline reaction

time,S and slope rants by
subject diffet in

I
group : + Aoi + AliXij how much Days afet

*between intercept their Reaction

and stope

[ expected reaction time on DayO( baseline)

L1 vanineranechangebyeachadditional ain

for model or random effect.
diagnostic Yi = PotBiXi + Goi + Dixi
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> fit.sleep = lmer(Reaction ~ Days + (Days||Subject) , sleepstudy)
> summary(fit.sleep)
Linear mixed model fit by REML [’lmerMod’]
Formula: Reaction ~ Days + ((1 | Subject) + (0 + Days | Subject))

Data: sleepstudy

REML criterion at convergence: 1743.7

Scaled residuals:
Min 1Q Median 3Q Max

-3.9626 -0.4625 0.0204 0.4653 5.1860

Random effects:
Groups Name Variance Std.Dev.
Subject (Intercept) 627.57 25.051
Subject.1 Days 35.86 5.988
Residual 653.58 25.565

Number of obs: 180, groups: Subject, 18

Fixed effects:
Estimate Std. Error t value

(Intercept) 251.405 6.885 36.513
Days 10.467 1.560 6.712

Correlation of Fixed Effects:
(Intr)
Days -0.184

correlation now not estimated

↳
naming convention only : now two separate random effect
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> dotplot(ranef(fit.sleep))
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> fitsleep.profile = profile(fit.sleep); densityplot(fitsleep.profile)
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Software – SAS
Recall R command

> fit.sleep = lmer(Reaction ~ Days + (Days||Subject) , sleepstudy)

The following yield equivalent results . . .

proc mixed data=sleep covtest cl;
class subject;
model reaction=days / solution cl;
random subject days*subject / solution;

proc mixed data=sleep covtest cl;
class subject;
model reaction=days / solution cl;
random intercept days / subject=subject solution;

proc glimmix data=sleep;
class subject;
model reaction=days / solution cl;
random subject days*subject / solution;

proc glimmix data=sleep;
class subject;
model reaction=days / solution cl;
random intercept days / subject=subject solution;

random
fix

slope
slope

↑
↑

-> M+ di + Bj + 2Bij + Eij
↓ ↓ ↓

fix
random random

intempt intercept residual
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Correlated & Matrices

lme4::lmer: = ϑ2
only; diagonal (use || instead of |) or completely

unstructured (use | instead of ||)

proc mixed: controlled by repeated stmt; controlled by random stmt

proc glimmix: controlled by random stmt, with _residual_ before “/”;

controlled by random stmt

• Autoregressive of order one, i.e., AR(1) type=ar(1)

= ϑ2





1 ϱ ϱ2 ϱ3

ϱ 1 ϱ ϱ2

ϱ2 ϱ 1 ϱ
ϱ3 ϱ2 ϱ 1




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• Compound symmetry type=cs

= ϑ2





1 ϱ ϱ ϱ
ϱ 1 ϱ ϱ
ϱ ϱ 1 ϱ
ϱ ϱ ϱ 1





• Toeplitz, two bands type=toep(2)

= ϑ2





1 ϱ1 0 0

ϱ1 1 ϱ1 0

0 ϱ1 1 ϱ1
0 0 ϱ1 1





• Toeplitz, three bands type=toep(3)

= ϑ2





1 ϱ1 ϱ2 0

ϱ1 1 ϱ1 ϱ2
ϱ2 ϱ1 1 ϱ1
0 ϱ2 ϱ1 1




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• Unstructured type=un

=





ϑ2
1 ϑ12 ϑ13 ϑ14

ϑ12 ϑ2
2 ϑ23 ϑ24

ϑ13 ϑ23 ϑ2
3 ϑ34

ϑ14 ϑ24 ϑ34 ϑ2
4





• Unstructured, one band type=un(1)

=





ϑ2
1 0 0 0

0 ϑ2
2 0 0

0 0 ϑ2
3 0

0 0 0 ϑ2
4





• Unstructured, two bands type=un(2)

=





ϑ2
1 ϑ12 0 0

ϑ12 ϑ2
2 ϑ23 0

0 ϑ23 ϑ2
3 ϑ34

0 0 ϑ34 ϑ2
4




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Software – SAS

Recall R command

> fit.sleep = lmer(Reaction ~ Days + (Days|Subject) , sleepstudy)

The following yield equivalent results . . .

proc mixed data=sleep covtest cl;
class subject;
model reaction=days / solution cl;
random intercept days / subject=subject solution type=un;

proc glimmix data=sleep;
class subject;
model reaction=days / solution cl;
random intercept days / subject=subject solution type=un;
covtest diagg / wald cl;
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Longitudinal modeling that allows correlation across time for each subject . . .

proc mixed data=sleep covtest cl;
class subject;
model reaction=days / solution cl;
random intercept days / subject=subject solution;
repeated / subject=subject type=ar(1);

proc glimmix data=sleep;
class subject;
model reaction=days / solution cl;
random intercept days / subject=subject solution;
random _residual_ / subject=subject type=ar(1);
covtest diagr / wald cl;
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Classical Linear Model (LM):

= ω + ε, ε → N(0,ϑ2 )
• is n ↑ 1, observed

• is n ↑ p, known covariate matrix

• ω is p ↑ 1, unknown fixed e!ects

• Parameters to be estimated: ω, ϑ2

In other words . . .

• Linear Predictor, aka Systematic Component:
ω . . . T

i
ω is ith entry, often ϖi

• Identity Link:
E (Yi ) = T

i
ω . . . “link” transforms E (Yi ) to linear predictor scale

• Random Component:
Y1, . . . ,Yn indep normal with var(Yi ) = ϑ2
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Generalized Linear Model (GLM)
• Linear Predictor, aka Systematic Component:

ω . . . T

i
ω is ith entry, often ϖi

• Link:
g (E (Yi )) = T

i
ω . . . E (Yi ) = g

→1
(

T

i
ω
)

Note that g(·) is link, g→1(·) is inverse link

• Random Component:
Y1, . . . ,Yn indep from the exponential family with dispersion

parameter ε

Parameters to be estimated: ω and ε

Properties of link function g(·): • monotonic and invertible
• maps mean response to a scale where covariate e!ects are additive
• ensures range restriction for mean response
• distns in exponential family have “canonical” or “natural” link functions
• any suitable link function may be paired with any distribution in the

exponential family
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Goals for GLM

• Fit the model, i.e., estimate ω and ε

• CI and HT for ω: need distribution, standard error
• Inference on functions of ω:

• H0 : ω = ?
• Estimate mean response g

→1
(

T

i
ω
)
. . . CI & HT?

• How well does the model fit?
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Exponential family with natural parameter ϱ = ϱ(µ), dispersion (scale) parameter ε,
and known weight w : pdf has form . . .

f (yi ) = exp

{
yiωi → b(ωi )

εwi

+ c(yi ,εwi )

}

for some functions b(·) and c(·).

N(µi ,ϑ2)

f (yi ) =
1

↑
2ϖϑ2

exp

{
→
(yi → µi )2

2ϑ2

}
= exp

{
→
(yi → µi )2

2ϑ2
→

1

2
ln(2ϖ)→

1

2
ln(ϑ2)

}

= exp

{
→y

2
i
→ µ2

i
+ 2yiµi

2ϑ2
→

1

2
ln(2ϖ)→

1

2
ln(ϑ2)

}

= exp






yiµi → 1
2µ

2
i

ϑ2
︸ ︷︷ ︸

ωi = µi ,ε = ϑ2

b(ωi ) =
1
2 ω

2
i
,wi = 1

→
y
2
i

2ϑ2
→

1

2
ln(2ϖ)→

1

2
ln(ϑ2)

︸ ︷︷ ︸
c(yi ,εwi )





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Exponential family with natural parameter ϱ = ϱ(µ), dispersion (scale) parameter ε,
and known weight w : pdf has form . . .

f (yi ) = exp

{
yiωi → b(ωi )

εwi

+ c(yi ,εwi )

}

for some functions b(·) and c(·).

Yi is proportion of successes: 1
ni
Bin(ni , pi )

f (yi ) =


ni

ni yi


p
ni yi

i
(1→ pi )

ni→ni yi =


ni

ni yi


pi

1→ pi


ni yi

(1→ pi )
ni

= exp

{
ni yi ln


pi

1→ pi


+ ni ln(1→ pi ) + ln


ni

ni yi

}

= exp






yi ln


pi

1→pi


→ ln


1

1→pi



1/ni︸ ︷︷ ︸
ωi = ln


pi

1→pi


,ε = 1,wi = 1/ni

b(ωi ) = ln


1
1→pi


= ln(1 + e

ϑi )

+ ln


ni

ni yi



︸ ︷︷ ︸
c(yi ,εwi )





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Exponential family with natural parameter ϱ = ϱ(µ), dispersion (scale) parameter ε,
and known weight w : pdf has form . . .

f (yi ) = exp

{
yiωi → b(ωi )

εwi

+ c(yi ,εwi )

}

for some functions b(·) and c(·).

Poisson(ϱi )

f (yi ) =
e
→ϖi ϱyi

i

yi !
= exp






yi lnϱi → ϱi︸ ︷︷ ︸
ωi = lnϱi ,ε = 1,wi = 1

b(ωi ) = ϱi = e
ϑi

→ ln(yi !)︸ ︷︷ ︸
c(yi ,εwi )






Properties:

• µi = b
↑(ωi ) is mean function

• b
↑↑(ωi ) is ‘variance’ function, with var(Yi ) = εwib

↑↑(ωi )

⑤

&
-
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ωi (µi ) b
↑(ωi ) b

↑↑(ωi )

Distribution Canonical link Inverse link Mean function ‘Variance’ fnc
for Yi ε wi g(µi ) = T

i
ω g

→1( T

i
ω) = µi E(Yi )

1
εwi

var(Yi )

N(µi ,ϑ2) ϑ2 1 µi ; identity T

i
ω; identity µi 1

1
ni
Bin(ni , pi ) 1 1

ni
ln


pi

1→pi


; logit e

T

i
ω

1+e
T

i
ω
; expit pi pi (1→ pi )

Poisson(ϱi ) 1 1 lnϱi ; log e
T

i
ω; exp ϱi ϱi

Note: The ‘variance’ function is sometimes denoted as h(µi )
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Inference on ω

• Estimate ω by maximum likelihood

• ↓
n

(
ω̂ ↔ ω

)
d↔↗ N

(
0, [I1(ω)]

→1
)

where nI1(ω) = T →1

=




var(Y1) 0

. . .
0 var(Yn)



 , =
ςµ

ςωT

In other words, ω̂ ↘ N

(
ω,

[
T →1

]→1
)

. . . use this for CIs

• Hypothesis testing for ω

• Wald test: TW

H0↘ φ2
ω

• Score test: TS

H0↘ φ2
ω

• Asymptotic likelihood ratio test: TLR

H0↘ φ2
ω TLR = 2{↼Ha

↔ ↼H0}
• Exact likelihood ratio test

O g

E
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Deviance
↼(µ,ε; ) denotes loglikelihood

• A saturated model has µ̂ = , and “fits the data perfectly”

• Consider a model M, less complex than saturated, with estimated mean
response µ̂ based on p regression parameters.
How well does Model M fit, relative to the saturated model?

• Deviance for model M is
DM = ε · TLR: saturated vs. model M = ε · 2 {↼( ,ε; )↔ ↼(µ̂,ε; )}

• Scaled deviance for model M is simply DM/ε

N(µi ,ϑ2) ↼(µ,ε; ) =
∑

n

i=1

{
↔ (yi→µi )

2

2ε2 ↔ 1
2 ln(2↽)↔

1
2 ln(ϑ

2)


↓ ς( ,ε; ) =
n

i=1

{
→
1

2
ln(2ϖ)→

1

2
ln(ϑ2)

}

ς(µ,ε; ) =
n

i=1

{
→
(yi → µi )2

2ϑ2
→

1

2
ln(2ϖ)→

1

2
ln(ϑ2)

}

DM = ε · 2
n

i=1

{
(yi → µi )2

2ϑ2

}
=

n

i=1

(yi → µi )
2 = SSE . . . . . .DM/ε ↔ φ2

n→p is exact

for normal

* exact !
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• If Yi has a distribution “close to normal” with link “close to identity,” then
DM/ε ↘ φ2

n→p

• Approximation will often NOT improve as n increases!
• Suppose data are grouped, n is the # of groups and is fixed. We want the

size of each group to be large

Bin(ni , pi ), i = 1, . . . , n : want ni large

• Lack of fit testing . . .H0: model M fits the data vs. Ha: not H0

Reject if DM/ε > φ2
n→p,ϑ

• Consider testing H0: model M0 vs. Ha: model M, where M0 ≃ M is a
submodel (i.e., nested) with q < p regression parameters. Note that

TLR =
DM0 ↔ DM

ε
d↔↗ φ2

p→q
when H0 is true

-

Global test

-
&
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Distribution DM

N(µi ,ϑ2)
∑

n

i=1(yi ↔ µ̂i )2

1
ni
Bin(ni , pi ) 2

∑
n

i=1

{
niyi ln

(
yi

µ̂i

)
+ (ni ↔ niyi ) ln

(
1→yi

1→µ̂i

)

Bin(ni , pi ) 2
∑

n

i=1

{
yi ln

(
yi

µ̂i

)
+ (ni ↔ yi ) ln

(
ni→yi

ni→µ̂i

)

Poisson(⇀i ) 2
∑

n

i=1

{
yi ln

(
yi

µ̂i

)
↔ (yi ↔ µ̂i )


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Estimating ω

• Some families set a value for ε, but it is good practice to estimate it

• Assuming DM/ε ↘ φ2
n→p

, a method of moments estimator of ε is

DM/ε
set
= E

(
φ2
n→p

)
= n ↔ p ⇐ ε̂ =

DM

n ↔ p

• ε̂ “large” may be due to

• inadequate linear predictor, i.e., missing predictors
• overdispersion, i.e., var(Yi ) > εwih(µi ), where ε is given by family

• Correlation between Y1, . . . ,Yn can lead to overdispersion

• Recall
var(ω̂)

.
= ε

(
T [diag(w1h(µ1), . . . ,wnh(µn))]

→1
)→1

so over(under)-reporting the value of ε will lead to SEs that are too
large(small).

MoM

mmm

mmmum

umu

???

#
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A Basic Checklist

• Choose family (distribution + link)

• Select covariates and estimate ω

• Lack of fit testing using DM/ε if appropriate
• Compare scaled deviances of nested models

• Estimate ε

• Report SE (ω̂j), SE (µ̂i )

• Inference on nonlinear function of ω will need Taylor’s approx for SE

• Model interpretation – odds, odds ratio, log odds, log odds ratio

• Problems with convergence – complete and quasi-complete separation
num
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Inference, treating ω as known
Maximum likelihood estimation for ω: . . . . . . . . . . . . . . . . . . . . . . . . . . . . need ↼(ω,ε; )

• µi = g
→1( T

i
ω) is a function of ω

• ϱi is a function of µi , and hence a function of ω

• ↼(µ,ε; ) is loglikelihood function

↼(µ,ε; ) =
n

i=1


yiϱi ↔ b(ϱi )

εwi

+ c(yi ,εwi )



• Score wrt ϑ:
ς↼(µ,ε; )

ςϱi
=

yi ↔ b
↑(ϱi )

εwi

=
yi ↔ µi

εwi

• Score wrt ω:
ς↼(µ,ε; )

ςω
= T →1( ↔ µ)

where = diag(εw1h(µ1), . . . ,εwnh(µn)) has var(Yi ) on its diagonal, and
= ϖµ

ϖωT has n rows and same number of columns as

> natural parameter

S
E

O
i5b"(0i) = h(Mi) ? P

2
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• Example: N(µi ,ϑ2):
µi = T

i
ω, µ = ω, h(µi ) = 1, ε = ϑ2, wi = 1

⇁↗ = ϑ2 , = ϖ ω
ϖωT =

⇁↗ T ( ↔ ω)/ϑ2 = 0 ⇐ T = T ω, usual normal eqns

• An estimate of the large-sample variance of ω̂ is

⊋
var(ω̂) =

(
̂T ̂→1 ̂

)→1
normal, exact

= ϑ2( T )→1

• Estimate mean response . . .
• µ̂ = g

→1( T ω̂) usu. biased, even if ω̂ is unbiased
• SE (µ̂): Use Taylor series of g→1( T ω̂) around ω↓ to get linear

approximation, then use variance of linearization:

⊋var(µ̂) .
=


ςg→1(ϖ)

ςϖ


ϱ=ϱ̂

2

T

(
̂T ̂→1 ̂

)→1

• If the canonical link (i.e., ω = ε(µ)) is used: ϱg→1(ς)
ϱς = ϱµ

ϱϑ(µ) = h(µ)

⊋var(µ̂) .
= h(µ̂)2 T

(
̂T ̂→1 ̂

)→1

delta theorem

-
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• Tests for functions of ω may be conducted using asymptotic Wald, likelihood
ratio, and score tests, comparing each of TW ,TLR ,TS to a chi-squared
distribution with degrees of freedom matching the number of constraints placed
on ω.

E.g., for testing H0 : ω = , then

TW = ( ω̂ ↔ )T
 (

̂T ̂→1 ̂
)→1

T

→1

( ω̂ ↔ )

compares to a φ2
rank( ) distribution

-
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ST704, Sujit K. Ghosh

GLM, Part II

Logistic Regression

Probit Regression

Interpreting the Logistic Model

Example: Dose Response Modeling, using Logistic Regression

Data and plots

Logistic model

Software

SAS code: genmod, glimmix, logistic

R code: glm

Residuals and Diagnostics

Complete and Quasi-complete Separation

A Designed Binomial Study

Poisson Modeling

Contingency Tables via Poisson Modeling
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Logistic Regression
Linear predictor:

T
i ω

Link function: logit, i.e., ln

(
pi

1→pi

)
also ln

(
p( )

1→p( )

)

Random component: Yi independent
1
ni
Bin(ni , pi ), i = 1, 2, . . . , n

logit(p(x)) = ln

(
p(x)

1→p(x)

)
= ω0 + ω1x = →1 + x

g()

concave

Convex
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Probit Regression

Linear predictor:
T
i ω

Link function: probit, i.e., !
→1

(pi ), where !(·) is N(0,1) cdf also !
→1

(p( ))

Random component: Yi independent
1
ni
Bin(ni , pi ), i = 1, 2, . . . , n

!
→1

(p(x)) = ω0 + ω1x = →0.6 + 0.6x

ji . S
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Interpreting the Logistic Model

ln

(
p(x)

1→p(x)

)
= ω0 + ω1x

odds(x) =
p(x)

1→p(x) = 1 ↭ S & F equally likely, aka ‘odds are even’

< 1 ↭ S less likely

> 1 ↭ S more likely

ln

(
p(x)

1→p(x)

)
ω0=ω1=0

= 0 ↭ odds (= e
0
= 1) are even and don’t change with x

ln

(
p(x)

1→p(x)

)
ω1=0
= ω0 ↭ odds (= e

ω0) are not even but don’t change with x

ε ω0 > 0 : S is more likely

ε ω0 < 0 : S is less likely

[
p(x+1)

1→p(x+1)

]/[
p(x)

1→p(x)

]
=

eω0+ω1(x+1)

eω0+ω1x
= e

ω1 is ‘odds ratio for 1 unit increase in x ’

ln

(
p(x)

1→p(x)

)
= ω0 + ω1x ↑ p(x)

1→p(x) = e
ω0

(
e
ω1
)x

• The odds at x = 0 is e
ω0

• The odds increase multiplicatively by e
ω1 for 1 unit increase in x

• ω1 > 0: p(x) → as x →
• ω1 < 0: p(x) ↑ as x →

[

Di
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Dose Response Modeling

Dose: % concentration of insecticide

Response: proportion of larvae killed, p̂i : yi = ki/ni , ni = 20, i = 1, . . . , 7

Assume:

(1) larvae react independently

(2) larvae exposed to same conc have equal probability of survival

concentration (%) .375 .75 1.5 3 6 12 24

# of larvae killed 0 1 8 11 16 18 20

Grouped data . . . n = 7 groups NOT n = 7↓ 20 = 140

• Choose family : Bin(ni , pi ) + logit link

• Select covariates . . . look at plots . . . but p̂i = 0, p̂i = 1 cause problems

empirical logit: ln

(
ki + 0.5

ni → ki + 0.5

)
In)-p) = In),ni)

miki)
What 15 this 0 . 5
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Logistic Model

Linear predictor: ω0 + ω1x , x = log10(conc)

Link function: logit, i.e., ln

(
pi

1→pi

)

Random component: Yi independent Bin(ni = 20, pi ), i = 1, 2, . . . , 7

ln

(
p(x)

1→p(x)

)
= ω0 + ω1x

Fit to data:

⊋
ln

(
p(x)

1→p(x)

)
= →1.7305 + 4.1651x = ω̂0 + ω̂1x

PCX = 1 +ERRiX
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⊋
ln

(
p(x)

1→p(x)

)
= →1.7305 + 4.1651x = ω̂0 + ω̂1x

• e
ω̂0 = 0.177 estimates “odds at x = 0” (i.e., odds at c = 10

0
= 1)

. . . survival is more likely (more than 5↓) than death at % conc of 1

CI: LR ↔
(
e
→2.5351, e→1.0557

)
= (0.079, 0.348)

CI: Wald ↔
(
e
→2.4637, e→0.9973

)
= (0.085, 0.369)

• e
ω̂1 = 64.399 estimates “odds ratio for 1 unit increase in x”

. . . odds of death increase by a factor of 64.399 for each increase of 1% conc

CI: LR ↔
(
e
3.0174, e5.6003

)
= (20.438, 270.508)

CI: Wald ↔
(
e
2.8872, e5.4430

)
= (17.943, 231.135)
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Lack of fit? • DM = 4.6206 Is this “large,” suggesting a bad model?

• Ok to do a formal test because ni = 20 is reasonable

H0: model fits data well vs. Ha: not H0

p → value = Pr

(
ϑ2
n→p > DM/ϖ

)
= Pr

(
ϑ2
7→2 > 4.6206

)
= 0.4639

Estimate ϖ: ϖ̂ =
DM
n→p =

4.6206
7→2 = 0.9241 “close to” theoretical value 1

Inverse regn: What concentration kills 50% of larvae? . . . 80%? . . . 100ϱ%?

ln

(
ε

1→ε

)
= ω0 + ω1xε ↑ xε =

1
ω1

{
ln

(
ε

1→ε

)
→ ω0

}

xε is a nonlinear function of ω, so need Taylor expansion for standard error!

Estimate SE

LD50 2.6030 0.3647

LD80 5.6016 1.0246

G
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SAS code

data kills;
input conc kills;
trials=20;
pkills=kills/trials;
logit=log((kills+.5)/(trials - kills+.5));
log10c=log10(conc);

datalines;
0.375 0
0.75 1
1.5 8
3.0 11
6.0 16
12.0 18
24.0 20
;
proc sgscatter data=kills;

plot (pkills logit)*(conc log10c) / columns=2 rows=2;
proc genmod data=kills;

model kills/trials=log10c / dist=binomial link=logit type1 type3 lrci;
*scale=deviance;

proc glimmix data=kills;
model kills/trials=log10c / dist=binomial link=logit solution cl;
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SAS code

proc logistic data=kills plots=all;
model kills/trials=log10c / link=logit clparm=both clodds=both;

Options o”ered by proc logistic include:

• lots of diagnostics plots, checks

• forward, backward, stepwise, best subset selection

• produce a receiver operating characteristic (ROC) curve for fitted model

• BUT only for independent binomial or multinomial data
un
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SAS code

proc nlmixed data=kills df=5;

parameters b0=-1.7 b1=4.0;

p = 1/(1+exp(- b0 - b1*log10c));

model kills ~ binomial(trials,p);

estimate ’LD50’ -b0/b1;

estimate ’LD50 original’ 10**(-b0/b1);

estimate ’LD80’ ( log(0.8/0.2) - b0 ) /b1;

estimate ’LD80 original’ 10**(( log(0.8/0.2) - b0 )/b1);

estimate ’OR’ exp(b1);
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R code

library(MASS)
library(car)

killsDF = data.frame(conc=c(.375,.75,1.5,3,6,12,24), dead=c(0,1,8,11,16,18,20))
killsDF$log10c = log(killsDF$conc,10)
killsDF$alive = 20 - killsDF$dead
fit = glm( cbind(dead,alive) ~ log10c, family=binomial(link=logit), data=killsDF )
summary( fit, correlation=T )

deviance(fit)
anova(fit)

confint(fit) #profile likelihood CI by default
confint.default(fit) #Wald CI, using z

( dose.p( fit, cf=1:2, p=c(.5,.8)) ) #Does inverse regression

predict(fit, type="response") #estimated mu
predict(fit, type="link") #estimated linear predictor (default)
predict(fit, type="response", se.fit=TRUE)
fitted(fit) #estimated mu
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resid(fit, type="deviance") #default
resid(fit, type="pearson")

residualPlots(fit) #loess smooth replaces quadratic
outlierTest(fit)
influencePlot(fit)
crPlots(fit)

library(visreg)
visreg(fit,scale="linear",ylab="log odds (death)",points=list(cex=1))
visreg(fit,scale="response",ylab="Pr(death)",partial=TRUE,points=list(cex=1))

library(glmnet)
fit2 = glmnet( cbind(killsDF$log10c, killsDF$conc),
cbind(killsDF$alive, killsDF$dead),
family="binomial" )
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Residuals and Diagnostics

• Several types of residuals are commonly used:

• Raw or response: yi ↓ µ̂i not very useful

• Pearson: rPi ↔ yi→µ̂i↗
wi h(µ̂i )

↭ X2 =
∑n

i=1(r
P
i )2 very useful for diagnostics

also
rPi→

ε
→

1↑hi
where hi is leverage

• Deviance: rDi ↔ sign(yi ↓ µ̂i )
↗
di ↭ DM =

∑n
i=1 di =

∑n
i=1(r

D
i )2

also
rDi→

ε
→

1↑hi
very useful for diagnostics

Note: The chi-squared statistic X2 and the scaled chi-squared statistic X2/ϑ are often used interchangeably with the

deviance DM and scaled deviance DM/ϑ.

• New diagnostic measure: likelihood displacement:

LDi ↗ 2

{
ςM(ε̂; )→ ςM(ε̂(→i); )

}

where ω̂(↑i) is MLE from excluding ith observation. Likelihood evaluated with all observations.

• Predicted values: µ̂i , response or
T
i ω̂, linear predictor
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Complete and Quasi-complete Separation1

What is it? A linear predictor (almost) completely separates response values

Complete:
y x1 x2
0 1 3
0 2 2
0 3 -1
0 3 -1
1 5 2
1 6 4
1 10 1
1 11 0

Pr(Y = 1|x1 > 3) best estimated as 1
Pr(Y = 1|x1 ↘ 3) best estimated as 0

p(x1) =
eωx1

1 + eωx1
x1>3: ω↑↓↓≃ 1

p(x1) =
eωx1

1 + eωx1
0<x1↔3: ω↑→↓↓≃ 0

Quasi-complete:
y x1 x2
0 1 3
0 2 2
0 3 -1
1 3 -1
1 5 2
1 6 4
1 10 1
1 11 0

Consequence: Di#culty getting convergence

Fix: Biased regression . . . Firth’s penalized procedure. Other penalties

Common with: Rare events; very large predictor space; many binary predictors; small

sample size

1
https://stats.idre.ucla.edu/other/mult-pkg/faq/general/

faqwhat-is-complete-or-quasi-complete-separation-in-logisticprobit-regression-and-how-do-we-deal-with-them/

!

num
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SAS Code

data one;

input y x1 x2;

datalines;

0 1 3

0 2 2

0 3 -1

0 3 -1

1 5 2

1 6 4

1 10 1

1 11 0

;

proc genmod data=one descending;

model y = x1 x2 / lrci lrcl ;

proc logistic data=one;

model y(event=’1’) = x1 x2 / cl plcl;

proc logistic data=one;

model y(event=’1’) = x1 x2 / cl plcl firth;

30
32
38
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10 proc genmod data=one descending;
11 model y = x1 x2 / dist=binomial lrci lrcl ; run;

NOTE: PROC GENMOD is modeling the probability that y=’1’.

NOTE: The Pearson chi-square and deviance are not computed since the AGGREGATE
option is not specified.

NOTE: Algorithm converged.

WARNING: Convergence not attained for at least one side of profile likelihood
confidence interval for Prm1. Number of iterations = 50.
WARNING: Convergence not attained for at least one side of profile likelihood
confidence interval for Prm2. Number of iterations = 50.
WARNING: Convergence not attained for at least one side of profile likelihood
confidence interval for Prm3. Number of iterations = 50.

NOTE: The scale parameter was held fixed.
NOTE: PROCEDURE GENMOD used (Total process time):
real time 0.05 seconds
cpu time 0.04 seconds

↑
to model the

probot 30

appropriate for binomial models
.
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The GENMOD Procedure

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF
Log Likelihood 0.0000
Full Log Likelihood 0.0000
AIC (smaller is better) 6.0000
AICC (smaller is better) 12.0000
BIC (smaller is better) 6.2383

Algorithm converged.

Analysis Of Maximum Likelihood Parameter Estimates

Standard Likelihood Ratio 95% Wald
Parameter DF Estimate Error Confidence Limits Chi-Square Pr > ChiSq

Intercept 1 -107.266 4.912E8 -107.266 -107.266 0.00 1.0000
x1 1 25.1805 75202009 25.1805 25.1805 0.00 1.0000
x2 1 9.5189 2.1684E8 9.5189 9.5189 0.00 1.0000
Scale 0 1.0000 0.0000 1.0000 1.0000

NOTE: The scale parameter was held fixed.

Q

model perfectly separates the data ,

mmmcan find parameters that perfectly

classify 4
=0 vs . Y=

1

I
*

As cannot find proper I
w

Huge :miningfull/unstable
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12 proc logistic data=one;* descending;
13 model y(event=’1’) = x1 x2 / cl plcl;

NOTE: PROC LOGISTIC is modeling the probability that y=1.

WARNING: There is a complete separation of data points. The maximum likelihood
estimate does not exist.

WARNING: The LOGISTIC procedure continues in spite of the above warning. Results
shown are based on the last maximum likelihood iteration. Validity of the model
fit is questionable.

NOTE: There were 8 observations read from the data set WORK.ONE.
NOTE: PROCEDURE LOGISTIC used (Total process time):
real time 0.08 seconds
cpu time 0.03 seconds

14 proc logistic data=one;* descending;
15 model y(event=’1’) = x1 x2 / cl plcl firth;
16 run;

NOTE: PROC LOGISTIC is modeling the probability that y=1.

NOTE: Convergence criterion (GCONV=1E-8) satisfied for the intercept-only model.
NOTE: Convergence criterion (GCONV=1E-8) satisfied.

NOTE: There were 8 observations read from the data set WORK.ONE.
NOTE: PROCEDURE LOGISTIC used (Total process time):
real time 0.08 seconds
cpu time 0.04 seconds

&⑳
wald - Eprofile-likelihood

~

wi

mm
Firth penalized procedure
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The LOGISTIC Procedure

Complete separation of data points detected.

WARNING: The maximum likelihood estimate does not exist.

WARNING: The LOGISTIC procedure continues in spite of the above warning. Results
shown are based on the last maximum likelihood iteration. Validity of the model fit
is questionable.

Model Fit Statistics
Intercept

Intercept and
Criterion Only Covariates
AIC 13.090 6.005
SC 13.170 6.244
-2 Log L 11.090 0.005

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 11.0850 2 0.0039
Score 6.8932 2 0.0319
Wald 0.1302 2 0.9370

②

dramatic improvement ,

=> but the "perfect fit"It misleading

w

Waldddepend on SE,

only wald insignificant indicate
~

large SE.
u
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Analysis of Maximum Likelihood Estimates
Standard Wald

Parameter DF Estimate Error Chi-Square Pr > ChiSq
Intercept 1 -20.7083 73.7757 0.0788 0.7789
x1 1 4.4921 12.7425 0.1243 0.7244
x2 1 2.3960 27.9875 0.0073 0.9318

Odds Ratio Estimates
Point 95% Wald

Effect Estimate Confidence Limits
x1 89.311 <0.001 >999.999
x2 10.980 <0.001 >999.999

Parameter Estimates and Profile-Likelihood Confidence Intervals
Parameter Estimate 95% Confidence Limits
Intercept -20.7083 . -2.2738
x1 4.4921 0.4161 .
x2 2.3960 . .

Parameter Estimates and Wald Confidence Intervals
Parameter Estimate 95% Confidence Limits
Intercept -20.7083 -165.3 123.9
x1 4.4921 -20.4827 29.4669
x2 2.3960 -52.4584 57.2505

very large unstable
[ > exp(B,)

massive meaning less

-
Does not compute limite ,

because likelihood 15

flate or infinite .

- includes 0 , insignificant
- unreliable due to inflated

Standard errors
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The LOGISTIC Procedure

Intercept-Only Model Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.

Model Convergence Status
Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics
Intercept

Intercept and
Criterion Only Covariates

AIC 7.478 5.995
SC 7.557 6.233
-2 Log L 5.478 -0.005

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 5.4830 2 0.0645
Score 6.8932 2 0.0319
Wald 2.6789 2 0.2620

③

rare but okay with penalized likelihood

wald tends to be less

ukmin small or noisy data
w
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Analysis of Penalized Maximum Likelihood Estimates
Standard Wald

Parameter DF Estimate Error Chi-Square Pr > ChiSq
Intercept 1 -3.2433 2.1696 2.2348 0.1349
x1 1 0.5163 0.3318 2.4212 0.1197
x2 1 0.4777 0.6322 0.5711 0.4498

Odds Ratio Estimates
Point 95% Wald

Effect Estimate Confidence Limits
x1 1.676 0.875 3.211
x2 1.612 0.467 5.567

Parameter Estimates and Profile-Likelihood Confidence Intervals
Parameter Estimate 95% Confidence Limits
Intercept -3.2433 -15.6408 -0.1134
x1 0.5163 0.0516 2.1353
x2 0.4777 -0.6628 4.5243

Parameter Estimates and Wald Confidence Intervals
Parameter Estimate 95% Confidence Limits
Intercept -3.2433 -7.4956 1.0089
x1 0.5163 -0.1340 1.1667
x2 0.4777 -0.7613 1.7168

m
13

[

CI includes
- 2

so neither significant

Generally more accurate

than the wald test.

(when small sample size)
un

less reliable
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R Code

> one = data.frame( y=c(0,0,0,0,1,1,1,1),x1=c(1,2,3,3,5,6,10,11),
+ x2=c(3,2,-1,-1,2,4,1,0) )
> fit1 = glm(y ~ x1+x2, data=one, family=binomial)
Warning message: glm.fit: fitted probabilities numerically 0 or 1 occurred
> summary(fit1)
Call: glm(formula = y ~ x1 + x2, family = binomial, data = one)

Deviance Residuals:
1 2 3 4 5 6 7 8

-2.110e-08 -1.404e-05 -2.522e-06 -2.522e-06 1.564e-05 2.110e-08 2.110e-08 2.110e-08

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -66.098 183471.722 0.000 1
x1 15.288 27362.843 0.001 1
x2 6.241 81543.720 0.000 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1.1090e+01 on 7 degrees of freedom
Residual deviance: 4.5454e-10 on 5 degrees of freedom
AIC: 6

Number of Fisher Scoring iterations: 24

= Q separation
detected

huge meaning less

7 7= ET Difordfin

under completely separation

very large Thus deviance/CR testsS are not reliable.

3 (wald also highly affected

fake perfect fit : due to overfitting
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> library(logistf)
> fit2 = logistf(y~., data=one)
> summary(fit2)
logistf(formula = y ~ ., data = one)

Model fitted by Penalized ML
Confidence intervals and p-values by Profile Likelihood Profile Likelihood Profile Likelihood

coef se(coef) lower 0.95 upper 0.95 Chisq p
(Intercept) -2.9748886 2.0332566 -15.47721061 -0.1208941 4.2179522 0.03999841
x1 0.4908484 0.3241088 0.05268297 2.1275832 5.0225056 0.02501994
x2 0.4313730 0.5941957 -0.65793072 4.4758930 0.7807099 0.37692411

Likelihood ratio test=5.505687 on 2 df, p=0.06374636, n=8
Wald test = 2.569861 on 2 df, p = 0.2766698

Covariance-Matrix:
[,1] [,2] [,3]

[1,] 4.1341324 -0.4970381 -0.6764776
[2,] -0.4970381 0.1050465 0.0260937
[3,] -0.6764776 0.0260937 0.3530685

firth
②

penalized estimates : shrink extreme values

-
2

significant

under small sample and

separation ,
use LRT.
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A Designed Binomial Study

• An experiment involves a 4↓ 4 factorial design with factors

temperature: T1,T2,T3,T4 and concentration: 0, 0.1, 1.0, 10

Completely randomized design

• What is the e”ect on germination probability of seeds?

• For each treatment combination, there are 4 dishes each with 50 seeds. Count number

that germinate, Yijk .

• Assume

• seeds germinate independently
• seeds treated similarly have the same probability of germinating
• Then Yijk ⇐ Bin(50,εij )

• Some questions:

• p1j = p2j = p3j = p4j
• pi1 = pi2 = pi3 = pi4
• p1. = p2. = p3. = p4.
• p.1 = p.2 = p.3 = p.4
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Code

proc genmod data=germrate;
class temp conc;
model germ/trials = temp conc temp*conc /

link=logit dist=binomial type1 type3;

fit = glm( cbind(germ,trials-germ) ~ temp*conc,
family=binomial(link=logit), data=germrate )

summary( fit, correlation=F )
deviance( fit )
anova( fit )
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Code

fit = glm( cbind(germ,trials-germ) ~ temp*conc,
family=binomial(link=logit), data=germrate )

summary( fit, correlation=F )
deviance( fit )
anova( fit )

> anova(fit)
Analysis of Deviance Table
Model: binomial, link: logit
Response: cbind(germ, trials - germ)
Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev
NULL 63 1193.80
temp 3 763.69 60 430.11
conc 3 282.01 57 148.11
temp:conc 9 92.46 48 55.64

? how much devianceeachtrsentially
reduces when

to the model .

!
um

7. -> Good model : most deviance explained

↓ very significant

From this
, can test Hull v.s . temp ; temp v.s . temp + Cont ; temp+ Conc v

.S . temp + conc + temp*Con
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Poisson Modeling

GLMs with log link are often called log-linear models.

AT&T 1988 soldering experiment : R data solder in package rpart, n = 720

skips: number of defects (solder skips) on a circuit board [response]

Opening: amount of clearance around the mounting pad (3 levels)

Solder: amount of solder (Thick or Thin)

Mask: type and thickness of the material used for the solder mask (A1.5, A3, A6,

B3, B6)

PadType: geometry and size of the mounting pad (10 levels)

Panel: each board was divided into 3 panels
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Code

library(rpart)
plot(skips~.,solder)
solder$Panel = as.factor(solder$Panel)
summary(solder)

fit = glm(skips~., family=poisson, data=solder); summary(fit)
anova(fit, test="Chisq")

proc genmod data=solder;
class opening solder mask padtype panel;
model skips = opening solder mask padtype panel /

link=log dist=poisson type1 type3;
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Poisson Modeling: nij ↘ Poisson(φij)

Assuming independence: ni· ↘ Poisson(φi·) where φi· =
∑

j φij

n·j ↘ Poisson(φ·j) where φ·j =
∑

i φij

n·· ↘ Poisson(φ··) where φ·· =
∑

i,j φij

φij =
ϖi·ϖ·j
ϖ··

↭ ln(φij) = → ln(φ··) + ln(φi·) + ln(φ·j) ↗ µ+ ↼i + ωj

Looks like a two-way ANOVA without interaction!

Multinomial Modeling: Assumes n·· is fixed.
(
{nij}↗i,j

)
↘ Multinomial

(
n··, {pij}↗i,j

)

Assuming independence: pij = pi·p·j ↭ φij = E(nij) = n··pi·p·j

↭ ln(φij) = ln(n··) + ln(pi·) + ln(p·j) ↗ µ↘
+ ↼↘

i + ω↘
j

Looks like a two-way ANOVA without interaction!
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Poisson Modeling: nij ↘ Poisson(φij)

Independence: ln(φij) = µ+ ↼i + ωj

Saturated model: ln(φij) = µ+ ↼i + ωj + (↼ω)ij
Is there an in-between model?

Linear-by-linear association: ln(φij) = µ+ ↼i + ωj + ↽uivj
ui , vj represent “scores” e.g., ui = i → 2, vj = j → 2.5

Agreement: ln(φij) = µ+ ↼i + ωj + ↽I(i = j)

Example: Results of rating the same 236 units by two di”erent raters on an ordinal scale

from 1 to 5.

Rater 1

Rater 2 1 2 3 4 5 Total

1 10 6 4 2 2 24

2 12 20 16 7 2 57

3 1 12 30 20 6 69

4 4 5 10 25 12 56

5 1 3 3 8 15 30

Total 28 46 63 62 37 236
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ST704, Sujit K. Ghosh

Generalized Linear Mixed Models

Introduction

Example
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Generalized Linear Mixed Model (GLMM)

LM: E ( ) = ω LMM: E ( |ε) = ω + ε
GLM: E ( ) = g→1( ω) GLMM: E ( |ε) = g→1( ω + ε)

• is n → 1, observed

• is n → p, known covariate matrix

• ω is p → 1, unknown fixed e!ects

• is n → q, known covariate matrix

• ε is q → 1, random e!ects, where ε ↑ N(0, )

• g(·) is link function and g→1(·) is inverse link function

• GLMM: Var( |ε) = 1/2 1/2

• = ω as default
• = diag (w1h(µ1), . . . ,wnh(µn))

Slight abuse of notation in that functions g(·) and g→1(·) apply to scalars, not vectors.
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Standardized Mortality Ratio
Standardized Mortality Ratio (SMR) is a ratio between the observed num-
ber of deaths in an study population and the number of deaths would be
expected, based on the age- and sex-specific rates in a standard popula-
tion and the population size of the study population by the same age/sex
groups. If the ratio of observed:expected deaths is greater than 1.0, there
is said to be ”excess deaths” in the study population.

. . . The SMR is used to compare the mortality risk of an study popu-
lation to that of a standard population. It is especially applicable where the
two populations have dissimilar age distributions, and in cases where direct
age standardization may not be appropriate because the study population
is small, or when lack of age-specific mortality rates precludes calculation
of directly-age-standardized mortality rates. 1

Yi : # deaths in region i

Ei : expected # deaths in region i , according to age & sex death
rates

SMRi :
Yi
Ei

1
https://ibis.doh.nm.gov/resource/SMR_ISR.html
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Source: SAS glimmix “Example 44.3 Smoothing Disease Rates”

Lip cancer in 56 counties of Scotland, 1975-1980

Xi is % of employees in agriculture, fishing, forestry.
May be a surrogate for exposure to sunlight.

Does Xi help explain variability in SMRi across counties?

Belief: Yi ↑ Poisson(εi ), so SMRi ↓ Yi
Ei

has mean ωi
Ei

Model 1: ln
(
ωi
Ei

)
= ϑ0 + ϑ1xi ↭ ln(εi ) = ln(Ei ) + ϑ0 + ϑ1xi

Model 2: ln
(
ωi
Ei

)
= ϑ0+ϑ1xi +ϖi ↭ ln(εi ) = ln(Ei )+ϑ0+ϑ1xi +ϖi

random
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proc glimmix data=lipcancer plots=(studentpanel residualpanel);

class county;

loge = log(expected);

model observed = employment / dist=poisson offset=loge

solution cl ddfm=none;

random county;

covtest zerog / cl(type=profile);

covtest indep;

SMR = observed/expected;

SMR_pred = exp(_zgamma_ + _xbeta_);

id county employment SMR SMR_pred;

output out=glimmixout;

proc sgplot data=glimmixout;

reg x=smr y=smr_pred / datalabel=county clm curvelabel;

run;
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R function to use: glmer in package lme4

Description

Fit a generalized linear mixed-effects model (GLMM). Both fixed effects and

random effects are specified via the model formula.

Usage

glmer(formula, data = NULL, family = gaussian, control = glmerControl(),

start = NULL, verbose = 0L, nAGQ = 1L, subset, weights, na.action,

offset, contrasts = NULL, mustart, etastart,

devFunOnly = FALSE, ...)

Arguments

formula: a two-sided linear formula object describing both the fixed-effects

and random effects part of the model, with the response on the left of a

~ operator and the terms, separated by + operators, on the right.

Random-effects terms are distinguished by vertical bars ("|") separating

expressions for design matrices from grouping factors.



Model Design

aple Linear Model

Model : Y :
= Po + B, Xi + Ei i = 1 ... in Ei id N(0 , 02

1

Estimates : Bo = -# rxy =n[(*:,
1

Bi = rxy= =
z(X -

zy
-y

Sx = [i(Xi-*)

Source of SS MS E(MS) F

Regression 1 [i(
.

- Yi)2 SSR &+ BiZXi-Y MSR/MSE ~ Fan (PRZi-,
M

Error H -2 ZilYi- Yi)2 SSE/(n-2) 52

Ho : B ,
= 0 - tra

Total H - 1 Zi(Yi -. 3

+
same if on

Multiple Linear Regression
Model : Yij = Bo + BiXij + Eij Eij id N 10 , 02)

Estimates : 5 = (xixy
Source of SS E(MS) & not included F

Regression P [i]j(%.. - Yij) r + +Bx*

B MSR/MSE~Fpn-p-
1) BXXB)

Error n - (p+ 1) [i]j)Yij - Yij) 52 ↓
Total n - 1 [i[j) Yij - Y..

R or+x(I-P1)XB if non-centered

Cell-Means

Models : Yij =Mi + Zij i= 1 ,
. . -

, 1 j = 1. , ni Eij idN70 , 02)

Estimates : Mi = Yi. !
Source of SS E(MS) F

Trt 2-1 ZiZj)Y..
-Yi

.

R = YPPx-Pe)Y & + Inimi-us MSTHIMSE ~F MiCMi-As252

Error I(j- 1) [i]j(Yij - Vi.
) = YPCI-PXTY 52 Il

Total 15 - 1 Zij(Yij - Y.. )2 =CI-P1)Y Mix(I- Pz)XM

Ho : M, = . .. = Ma F= Ho : Mi =o== mi



Factorial (effect) Model (ANOVA)

① Fixed effect one-way cunbalanced

1 Models : Yij =M + Li + Eij i= 1 .
. .

., I j = / , ..., Hi Eij & N(0 , 02

notice only

!
Models : Yij = M + Li + Eij zi = 1

. .... 1 j = 1 . ... EijidN10 , 82) completely randomized design (CRD

pure error Estimates : MFGi = Yi Eciai = [citi
. sit . [ci = 0

M

in this case M + 2
.

=T
..

-

Since Mij = Yi
.

Source of SS E(MS) F

MSM
- Mean 1 NIT.

2
= y P1Y 2+ [2, (M +23 MSE ~ FN-I) NEM

Trt 2- I & %.

- Y = YYPx-PLY+Inicdi-2.
22 #SnFe

,
ne(dXY(1-Pz(Xa)

Erro N-1 & (Yij - Yi
.
) = y1- Px)Y 52 I

Ho : di =... = da Ho : Gi-dj = 0-!
Total N-1 [ (Yij - Y

.
3

eg e'

=x(I- P1)XQ

-

can disgade F = Ms MsE nineEn-rankx) (N-1) with e'E = HY

XenHix) = de

T

② Random effect one-way (balanced

Models: Yij = M + Ai + Eij i = 1 . ... a j = 1 .... n Epidiot's &muhledent
Estimates: M =. Ai nd NCO ,(2)

Source of SS E(MS) F

Mean 1 NT..

2

= YPLY

A a- 1 [izj(Y..

- Yi
.
) = y(Px- Pz)Y 82+Th #) ~Far

, an-1

Erro aln-1) [izj(Yij - Y.
Y = Y'SI-PX)Y 52

Total n - 1 &LYij - YiF = Y1l-PI)Y

Ho : CA = 0

F= Fa-
, ac - 1)

()



& Fixed effect (two may full factorial : crossed) = simple contrasts are NOT estimable

1 Models : Yijk = M + Li + Bj + (29)j + Eijk
i = 1 .

. .

., a j = 1 , ...,b k = 1, . . .. n Eijk And No , 82)

Estimates : nij
1

&
M + 2

.

5
.

+ (5)
..

= Y... ZiCi(di + (2B)ij) = [iCiYij · simple effect of 2 atj
1

equivalent M + di +Bj + (B)ij = Tij ZiCildi'+ Bi
.
) = ZiCiTi

.. main effect of
1( M + ai + + (B)i.

= Ti
. =dj(B; + (B)ij) = Zjdj Yij · simple effect of B at i

m + 2
.

+ 3) + (5)j = Yj . zjdj(B; Y([B)
.j) = Ijdj Y.j · main effect of B

for unbalanced design , marginal mean biased Eidi[jdj(fB)ij = ZidiIjdj Tij .

when balanced (SMean = Mean interaction effect of &B >
unbiased and BLUE I consistency of simple effect

Models : Yijk = M
*

+ 2 :
*

+ Bj
*

+ (2B)i + Eijk

i = 1 . . . ., a j = 1 , ...,b K = 1 ,
. . .

. n Eijk Id No , 82)

M+ = M - GB..

** = di + &Bi
.

Bj
*

= Bj + 25
.j

=Bij - [Bi
.

-Gj . + &B..

Source of SS E(MS) F

can disgard -> Mean 1 NVT...

2

L a- 1 /Ti..-T... ? 8+ buR((*) 252beanQ(B*)
B b- 1 j.-...

32 82+ auQ)B*) ! 282 &

↓B (a-1) (b-1) &(Tij. Ti
..

- Yi.

+ Y...
R+RBY ISG F((a-1)(b-1

nacB*

)(
202

Erro n- ab (Tij . - Y... )2 ↑
z

Total n - 1 in(Yijk
- Y... 12 a(2

*
) =F2(di* - 2+)

=I(di + (B)
.

- E
.

- (B)..)

Ho : 2,

*
=... = da di

*
= di + (B)i

·

E Yi
.. -Y... di

* -I
.

Ho : B, * = ... = Bp
* By = Rj + (IB)j Y.j.-...

E Bj
*

- B
.

-

Ho : &Bij
*

= 0 Fi ,j Lij
*

= KB)ij - (ER)i
.

- (B).j
+ (B)

..
- Yij .

- Yi
.

- Y.

+ Y
... EdBij

*

/ Y ↓ ->
(i + Bj + [Rij) - (di + 5. + di.) - (5.

+ Bj +d.j) +15.
+ B.

+2B
..)

=

GBij - &Bi
.

- GB
.j

+ 2B
..

= [Bij



① Mixed two-may effect model (balanced
,
crossed

Models : Yijk = M + di + Bj + [Bij + Eijk BjdNCo , ris)

3ial ...., a jel ..... b K = 1 , : H
&BijdNCo , Jas mutually independent

Estimates: MFI
.

= Y. . . Eijk [N(0 , 02
1

M + Gi = Yi..

Source of SS E(MS) F

MSA
L a - 1 2 inT...

- Yi
.

32 +2+(+ buQ(2) MSAB-Fa-, <- 1 (b-1)b
2

MSB O+daB

13 b - 1 Y...

- Yj. 32 82+82+ arUs MSAB(r+R+anc)~Fb- ,a-+xb-1

MS2B +2

↓B ca- 1)(b -1 ij.

- Yi
..

- Y
.j .

+ Y...
) F+Ti MSE (o2+Eras) ~ Facb-1)

, nar

Error n-ab k(Yijk - Yij . 72 82

Total n - 1 &Yijk - UT...
2

Ho : 2, = ... = Ga MS2/MSLB 1 F(a-1)
, ca-1(b- 1)

Ho : TB2 = o MSB/MS&B FCD-1)
, ca-1(b-1)

Ho : rai = 0 MSGB/MSE t Fca-scb-
, n-ab

⑤ Random two-way effect model (balanced , crossed)

Models : Yijk =M + Ai + Bj + ABij +

SijkAvid ABmula sent-

il ...., a jal ,b Kel , ... R

Source of SS E(MS) F

MSA 02 + dai
-

(L a - 1 2 inT...

- Yi
.

32 22+G + b MSAB 8+ n8B+ bOA) -Fa-1
, ca-1)(b-1

2

MSB O+daB

13 b - 1 Y...

- Yj. 32 82+82+ arUs MSAB(r+R+anc)~Fb- ,a-+xb-1

MS2B +2

↓B ca- 1)(b -1 ij.

- Yi
..

- Y
.j .

+ Y...
) F+Ti MSE (o2+cas)~ Fla-b-1) , nar

Error n-ab k(Yijk - Yij . 72 82

Total n - 1 &Yijk - UT...
2

# MSA/MSAB 1 F(a-is
, ca-1(b- 1)

MSB/MSAB FCD-1)
, Ca-1(b-1)

Ho : rai = 0 MSAB/MSE t Fca-scb-
, n-ab



⑥ Fixed effect (two may full factorial : nested (

Models: Yijk =M + di + Bicis + Eijk Eijk And N(0 ,02)

i = 1 , . . ., a j = / . . . ., bi K = 1 ,
. . .. Hi

Estimates : A main :I ci(di + Bici) = ZiCi(di + B
. (i)

simple for giren:(ii)=
here are bi - 1 linearly independentB simple effects at i (form dj independent contrasts)

Bi, ...,B

Source of SS E(MS) F

L a- 1 %... - Yi
.

32
252

B(2) Zilbi-1)Ti.

- Yij .

R

Erro n-Z ; b ; (Yijk - Yij .
72

Ho : Bi = ... = B! = o

·Total H-1 in(Yijk
- Y... 12

Ho : A =... = A= 0 main effect A

B2 = . .. =B= o

Ba =.
: =Bo

⑦ Mixed effect crested ,
balanced

Models : Yijk =M + di + Bicis + Eijk Eijk And N(0 ,02) mutually
~

i = 1 ...., a j= 1 ...., b k = 1, . . ., M Bicisd No ,
Discas)3

independent
-

Estimates : MFI. = Y...

1 -

M + Gi = Yi.

Source of SS E(MS) F

L a- 1 %... - Yi
.

32 r+U + b((2) ↑SA(A) ~Fay ,albs)
B(2) alb-1 ki.. - Yij . 2 +2 +OBi MSBA)(U) ~ Face-1

, n-a

Erro n- ab (Yijk - Yij.
2

52

Total n - 1 in(Yijk
- Y... 12

Ho : Zicidi =

0an effect of A with contrast < Ho : d. = ... = da

Ho : -B = 0



⑧ Random effect <rested

Models : Yijk =M + Ai + Bicis + Eijk Eijk And N(0 ,02) mutually
~

i = 1 ...., a j= 1 ...., b k = 1, . . ., M Bicis
d

NCO , wiscas)) independent
Aid NCO , WE

Source of SS E(MS) F
~ 2

ISA
(

02 + HOB(A)

A a- 1 %... - Yi
.

32 ↑+Gia +ba MMSB(A)O+b)~Fa-1
, alb - 1)

1

BCA) alb-1 ki.. - Yij . 2 +2 + ROBE MSBA)(U) ~ Face-1
, n-a

Erro n- ab (Yijk - Yij .
72 52

Total H-1 in(Yijk
- Y... 12

Ho :A = 0

Ho : TBCE) = 0

ANCOVA

Models: Yij = M + di + BXij + Eij i = 1
, . . ., k j= 1 ,

. . .. Hi Sijhd NO , 82)

Estimates : & by SLR

1

M + di =i .

- BXi
.

1

Zicidi =iCiYi-BZiCiX.

1

M+ di + BXij = Yij
1

M + di + BX.

= Yi - B(Xi.- Y
.. )

Source of SS E(MS) F

L k - 1 Y.

- Y.)
2

02 + TI; Ejki - 2
.
1

B I (Y..

- Yj) ?

Erro N - k - 1 &(Yij - Y5)2 ja

Total N - 1 F(Yij - Y..
12

Ho : B = 0 and 2,
=... = dk Global F test

Ho : 2 ,
= = 2K treatment test

Ho : B = 0 covariate test



Two-way effect model

① Two-way effect model ccrossed

Models: Yijk = M + dij + Eijk

i = 1 , ..., a j = 1 . ..., b , K = 1 .
. .

.. Mij EijkN(0, 82)

if hij = n ,
balanced E complete

1

Estimates : M + dij = Tij. Aj =ZiCidij=j = ZiCivij A simple effect at j

MFI
.

= V
...

A= Aj = =Ci. A main effect

M + Gi
.

= Mi
.

AB = [djAj = AB=CidjYij.
AB interaction effect

-

M + 2
.j

= Y.

j
. when a -e or b > 2

,
more than one contrasts available.

B

contrast table : (2X3 factorial)

miniI

B 1/2

B
2

10 -101 1/2

A'B' 1 - 10 - 110
interaction &AB2

10 -1-1efat O ↓

Source of SS E(MS) F

Model ab-1 T...

- Yij . 2 + + Q(2) ~ Fab-1
, n-ab

(lab-1)ES

Error n-ab jk(Y...

- Yijk? 52

Total n - 1 2k(Yijk -Y... 12

Ho : A = 0 No A main effect df = a - 1 = 1

Ho : B' = B
=

= 0 No B main effect df = b-1 = 2

Ho : AB = AB2 = 0 NO AB interaction effect df = (a- 1)(b- 1) = 2

② Two-way effect model (nested

Models : Yijk =M + Ejci) + Eijk Eijk Ind No , 22)

i = " , a jubali" bi Kl , " Hij

Estimates : ZicEis = ZiCiYi.. A main effect since nested ,
B main effect

Ijdjjcis = Zjdjj · Bsimple effect = doesn't make sense.



Block Design :

Models : Yij = M + Li + Eij zi = 1
. .... 1 j = 1 . ... EijidN10 , 82) completely randomized design (CRD

models : Yni =M + Bn + Zi + Enix Eni IdNCo , 02) Randomized complete block design (RCBD
-

n = 1 ,
. .

., by i=it -no replicas per combination

block effect treatment effect this no interaction
treatment applied on

Estimates : :Citi = [iCiTi (BLUE)
all blocks

Source of SS E(MS) F

Block b- 1 & (T
..

- Yu
.

? 82+ tQ(B) Typically not interested in this

C Treatment t - 1 FilT..

- T
. i .? -2+ bQ(z) ~Fty

, (t (b-1)
((t-1)b)

Total tb - 1 &(Yni-T..
)2 ↳

only in the blocking case ,
SSE isn't in easy form .(

Error (t- 1) (b -1) <Y.

- Yn
.

- Yi
.

+ Yni ? 52

> Models : YniMBuEni Eidomplete block designB

Estimates : Relies on softwares to construct BLUE for [iCiti

Problems : 1 . May not be able to estimate all treatment Contrast.

2. May have pairwise contrasts with different variances

Models: Balanced incomplete block design (BIBD)

Rules : b : block number

K : experimental units in one block Thus all pairwise contrasts

t : treatment number have equal variance

Each treatment occurs in exact v= blocks ↑
Each pair of treatment appears in X=K blocks 3
Of same as RCBD

Models : Yijk =M + Bi + Vj + 2k + Eijk EijkhdN0, 02) Latin Square Designs <LSD)

I= 1 ,
.. - k j = 1 .

: k k = 1 .
. . .t where Hijk = 1 Zillijk = [Hijk = 1 : Elijk = k

Estimates :

1

M + 5 + F
.

+ 2x = Y
.. k

[Ck[ = [kCkY
.. k



Split-plot design (CRD-RCBD)
-

random blocking factor
L

Models : whole plot : Yijk = M + Gi + Wjci) + Sijk

C Wisow 3 mumalyadenti = 1 ...., t jel... r K = li"S

wp main effect

Sub-plot :

YMW Wowz mumaldent

Sp main effect

Full model : Yijk =M + 2; + Wjci) + Bk + GBik + Rijk
i = 1 .

... it j = 1 ..... r k = 1 ... S

WjcicI NCO , On 3 mutually

Eijk INCO , 55) independent

Source of SS E(MS) F

2 t- 1 T...

- Yi...
2

55+ Sc+ rSR2 MSA/ISW

Werror t(r- 1) ·i ..

- Yij. 55+ Sow
- MSW/MSE

13 5- 1 %... - Y
.
k 52 + trR(B* MSBIMSE

2B (S -1)(t- 1) Tik-Yi.. - Yk +Y... 3 22 + r@(B* MSABIMSE

Error tr-1(5-1) EYijk - Tij . -Yik + Y.
Total trs-1 Yijk -Y... ,

2

Source A B AB WLAB)

of a- 1 b1(a- 1)(b -1) ab(r- 1

Source C AC BC ABC Error Total
-

df C - 1 (a - D)(c+) (b-y)() (a+>(b-1)( -1) ab(r-1)(c- 1) abre - 1

Ho : Tw
2

=

Ho : di
*

= 0/Bj* =0 /dB =o < be careful with this



Effect Principles
1
. Effect hierarchy : main effect and lower-order interactions more likely to be significant
2. Effect heredity : If interaction significant , keep parent terms

3. Effect sparsity : Few effects are significant
4. Factor sparsity : Few factors are significant



Model Diagnostics
Example Model Diagnostics

cook's distance

S
unusual data point

Definition :

Y = XB = AX Y = Py < projection of 1 on to the column space of "X"
,

Y = G1(X)

P : nat matrix

E
By examine the element of P , get

↳ Yi PiY +... PiiriYiy + PiiYi + PitiYiti + - + PinYr to know the influence of individual

centered design Pii : leverage of ith Component : levage + influence on fit ↑ response values on fitted values·

matrix with ~ 1. [Pii 1
,

Pii =ZPij ↑ in SLR
, Pii =+

intercept in model 2. If Pii = 1 , then rest of row (column) equals 0 : Yi = Y:

3. If Pii =o , then rest of row (& column) equals 0 : Yi =

4.

-1 Pij =

5. P is determined entirely by the design matrix X ,
and not at all by

Y.

P properties :

-L
I .

P is symmetric even if (XX)
-

is not . Orthogonal projection

2. P is invariant of <XX)
-

choice since P unique orthogonal projection ,
(XX)

-

varies

3. X = PX = x(xxiXX = X = (xxix) = X
-

Xp = x = XX(xx5x = x = x(xx) = (x)

4. rank(p) = trace(p) = rank(X)
,

where trace (D) = ZiPii

5.If 1 EC((X) , then each now (columns of P sums to 1.
. [iPij = jPij = 1

- with interaction



Potential issues in regression
1. Assumption violation

Assumptions: 1 . 1 : X 15 known
,

without error

1 .
2 : ECE) =0 , i . e . each model is correctly specified

1 . 3 : Var(E) = 07
,

i.e . equal variance ,
uncorrelated

1
.
4 : E ~N( .)

2
.

Unusual Data

3. Computational instability

1
.I

.obsenedwitherrormeasurement
error ,

ero-in-vanable moda

· Affects everything
· instrumental variable may help

1.2
.

Mean model is misspecified
· underspecification
· Model Not additive

· Nonlinear relationship
·

Diagnose : Plot ei vS . Yi should show random scatter.

(a) .
Ziei = o if model includes intercept

1b) .

ZieiYi = o (a) & (b) = Cource
, Y=0 => only implies no linear relationship

(c) .

Z : eixij =o (a) &() = Crce , Xj) =0

Plot ei r .s . Xj should show random scatter.

Partial Residual cleverage) plots should show straight lines.

&

·

S has more information than usual residual plot (when no much multicollinearity
e.g. Straight line says add Xj to model

Nonlinear relationship says to transform X; before adding to model.

MartialResidual for x : e
*

= Y - <Bo + BiX ,
+... + By Xj+ + xXj+ Bj+ Xj+ + ... + BXp)

= y - Y + BjXj
= e + BjXj



unbiased 1

Y v .S . XB+ zr Y v .S . XB
1

Y v .S
. ECY)

unbiased i

i biased



Note : 1
. If want to have ECB) = B , design X 'z = 0

· E(B) = B

( · E(Y) = XB

· e can be used to estimateU as e-NEr , <I-P)

2. If want to have ECY) = X B + zr
,

let zecolx

.
Thus "estimate B" and "estimate ECY)" have different requirements

1 . 3 (i) Heterogeneity i. .e . unequal variance

· estimator still unbiased
,

but not best

·

ANOVA sum of square still ok

· standard errors are wrong , tests , CI wrong

· Transformation may fix *

Truth : Y = X B + E E-N(0 , 03r)

Y = XB +22- N(0 , 5)

(ii) .
Correlated errors

· estimator still unbiased
,

but not best

·

ANOVA sum of square still ok

· standard errors are wrong , tests , CI wrong
· e .g : time series , spatial , split plot , subsamplingI · Other estimation procedure may help

1
. 4 checking for normality

why not use e = j-y to check for normality ?

1. Residuals are not independent
Cor(ei , ej) = - o Pij

2. Residuals are not identically distributed!
standardized residual : ri = ei/8 I-Pii

Var(ei) = <1- Pii) not constant

3. Residuals are not a random sample from error distribution

Studentized residual : ri = ei/in I-Pii

Deleted/Jackniff/Loocr results :
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Notation Inference Problems Mean model misspecified Covariance misspecified Normality

1. Assumptions violated:
1.3 (i) Heterogeneity, i.e., unequal variances
1.3 (ii) Correlated errors

Truth: = ω + ε, ε → (0,ϑ2 ) ↑ → ( ω,ϑ2 )
Assume: = ω + ε, ε → (0,ϑ2 ) to get ω̂ = ( )→1

Then

• E(ω̂) = ( )→1 ω = ω unbiased

• E( ̂ ) = E(ω̂) = ω unbiased

• E( ) = ( ↓ )E( ) = 0 unbiased for 0

• var(ω̂) = ( )→1 ϑ2 ( )→1

is not as “small” as possible among unbiased estimators

• cov( ̂ , ) = ϑ2 ( ↓ ) ↔= 0 correlated
even though ̂ = · ( ↓ ) = 0 orthogonal

*
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Notation Inference Problems Mean model misspecified Covariance misspecified Normality

Possible remedial actions . . .

• Use Weighted Least Squares (WLS)
if know var(Y ) = aω2, know a, know independent

• Use Interatively Reweighted Least Squares (IRLS)
if know var(Y ) = f [E(Y )], know independent

• Use Estimated Generalized Least Squares (EGLS)

• Use Generalized Linear Model (GLM)

• Transform!
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Notation Inference Problems Mean model misspecified Covariance misspecified Normality

There is the Box-Cox Family of Transformations:

Y (ω)
i =

{
Yω
i →1

ω
·
Y

ω→1 ω →= 0

·
Y ln(Yi ) ω = 0

where

·
Y= (Y1Y2 · · ·Yn)

1/n

Denominator and →1 in numerator are just for scaling.
Converts scale back to original units, and thus allows direct

comparison of SSE across models with di!erent powers.

• Fit ANOVA for several values of ε, e.g., ε = →1,→.9, . . . , 1. Record
SSE (ω) for each value of ε.

• Plot
{
ε, SSE (ω)

}
and determine SSE (ω)

min
• In the end, choose any value of ε that causes

SSE (ω) ↑ SSE (ω)
min

[
1 +

t2dfe ,ε/2
dfe

]
,

where dfe is the degrees of freedom associated with any SSE (ω)

Note: ω̂
(ω)

can be very di!erent as ε changes! Also sensitive to ω.
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Notation Inference Problems Mean model misspecified Covariance misspecified Normality

Other Guidance on Choosing a Transformation

If V (Y ) ↓ [E (Y )]2k then transform to Y 1→k , where “Y 0 = ln(Y )”.

k = 1 : V (Y ) ↓ {E (Y )}2
• Use transformation Y 1→k = Y 0 = ln(Y )
• Great if Y ↔ Gamma(ϑ,ϖ), with V (Y ) = [E (Y )]2/ϑ

• Example: Y = survival time of mice subjected to a
treatment

• Plot ei versus Ŷi is fan-shaped
• Possible alternative approach: generalized linear model
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Notation Inference Problems Mean model misspecified Covariance misspecified Normality

If V (Y ) ↓ [E (Y )]2k then transform to Y 1→k , where “Y 0 = ln(Y )”.

k = 0.5 : V (Y ) ↓ E (Y )
• Use transformation Y 1→k =

↗
Y

• Great if Y ↔ Poisson, with V (Y ) = E (Y )
• Example: Y = # trees in 1000 acres of a forested area

This is a count having a very large (possible “infinite”)
upper bound

• Plot ei versus Ŷi is fan-shaped
• Possible alternative approach: loglinear regression model

C
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Notation Inference Problems Mean model misspecified Covariance misspecified Normality

V (Y ) ↓ {E (Y )}{1→ E (Y )}
• Use transformation arcsin(

↗
Y ) = sin→1(

↗
Y )

• Great if nY ↔ Binomial, with
V (Y ) = [E (Y )][1→ E (Y )]/n

• Example: Y = proportion of 30 trees that are a”icted by a
fungus

• ( arcsin good when E (Y ) < 0.3 or E (Y ) > 0.7 )

• Plot ei versus Ŷi has bulge for Ŷ close to 0.5

• Possible alternative approach: logistic regression

Unequal variances often coexist with nonnormality!

=
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Notation Inference Problems Mean model misspecified Covariance misspecified Normality

1. Assumptions violated:
1.3 (ii) Correlated errors:

• Estimators are still unbiased, but not best.

• ANOVA sum-of-squares are still ok

• Standard errors are wrong, and hence tests and CIs are wrong

• Creates the problem: Time series, spatial, split plot, subsampling

• Tests

• Possible fix: Estimation procedures other than OLS

How to diagnose?

• Be guided by the type of data

• Look for patterns among residuals over time/space/etc.



31/36

Notation Inference Problems Mean model misspecified Covariance misspecified Normality

Detecting Correlation
Positively(Negatively) correlated data can lead to standard errors that are seriously
under-(over-)estimated, thus drastically a!ecting hypothesis tests and confidence
intervals.

Durbin-Watson Test of Autocorrelation

Durbin-Watson test statistic:

d =

∑n
i=2(ei → ei→1)2∑n

i=1 e
2
i

↘ 2(1→ ϱ̂) ↘






0 strong positive autocorrelation

2 no autocorrelation

4 strong negative autocorrelation

,

where ϱ̂ is the sample correlation between ei and ei→1

• Ordering of the data matters. Looking for correlation with immediate
neighbors, following sequence.

• Null distribution complicated
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Notation Inference Problems Mean model misspecified Covariance misspecified Normality

Example: 35-year sales history of a company
Y : annual sales, in thousands of dollars [SALES]
X : year [T]

OLS Regression:

ϖ̂0 = 0.402, with se(ϖ̂0) = 2.206
ϖ̂1 = 4.296, with se(ϖ̂1) = 0.107

AR(1) Regression:

ϖ̂0 = 0.422, with se(ϖ̂0) = 3.670
ϖ̂1 = 4.295, with se(ϖ̂1) = 0.179

proc reg data=sales35;

model sales=t / dwprob; **d=0.821, rho=0.590, pval[Ha:+ve corr] is <.0001;

proc arima data=sales35;

identify var=sales crosscorr=t;

estimate p=1 input=t; run;

fit = lm(SALES ~ T, data=SALES35); summary(fit)

library(car); durbinWatsonTest(fit)

# AR(1) regression:

fit = arima(SALES35$SALES, order=c(1, 0, 0), xreg = SALES35$T); fit
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Notation Inference Problems Mean model misspecified Covariance misspecified Normality

Check for Normality
• Checking for normality ranks low relative to other checks

• Expectation & variance of estimators and sums of squares are una!ected
by nonnormality

• ANOVA F-test is reasonably robust to nonnormality
• HTs and CIs are more a!ected by nonnormality, but robust in large

samples

• Testing for normality can be overkill. Instead,
• use histogram, with normal curve overlaid
• use normal quantile-quantile (Q-Q) plot and look for pattern1

• straight line ↭ normal distribution (intercept is mean, slope is std. dev.)

• “S” ↭ symmetric, light-tailed distribution

• “tangent” ↭ symmetric, heavy-tailed dist’n. Unequal variances?
Outliers?

• “J” ↭ positively skewed dist’n. Log transformation?
• “r” ↭ negatively skewed dist’n

• line not through origin ↭ missing important predictor variable

1
heavily dependent on sample size!
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Notation Inference Problems Mean model misspecified Covariance misspecified Normality

• Is a good choice for testing normality?
• Is it true that e1, . . . , en forms a random sample?

No because var(ei ) = ω2(1→ Pii ) & Cov(ei , ej) = →ω2Pij

• internally studentized residual
(R=standardized residual, SAS=studentized residual):

ri =
ei

s
↗
1→ Pii

, s =
↗
MSE , MSE from regn with all n obs

* var(ri ) ↘ 1.
* ri , rj are likely dependent
* ri ↘ tdfe (dependent numerator & denominator)

• externally studentized residual or studentized deleted residual
(R & SAS=rstudent residual):

r↑i =
Yi → Ŷi(i)

s(i)
√
1 + i (

T
(i) (i))→1 T

i

=
ei

s(i)
↗
1→ Pii

* var(r↑i ) ↘ 1.
* r↑i , r↑j are likely dependent
* r↑i ↘ tdfe→1 (better approx than ri) ( dfe is from regression with all n observations)

* r↑i reflects large values more dramatically than ri (Atkinson 1983)
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Notation Inference Problems Mean model misspecified Covariance misspecified Normality

• deleted/Jackknife/LOOCV results: run regression n times, with the ith
observation excluded during the ith run: (Belsley, Kuh, Welsch 1980)

• (i) is new design matrix from omitting the ith observation
• s2(i) = MSE(i) is the MSE from omitting the ith observation

No need to rerun the regn: (n ↑ p ↑ 1)s2(i) = (n ↑ p)s2 ↑ r 2i /(1↑ Pii )

• ω̂(i) is estimate of full p-dimensional vector ω from omitting the ith obs.

• ϖ̂j(i) is estimate of parameter ϖj from omitting the ith obs.
• ̂

(i) is prediction of full n-dimensional vector from omitting the ith obs.
• Ŷi(i) is prediction of ith observation Yi from omitting the ith obs.
• Yi → Ŷi(i) is called the ith deleted residual
• r↑i is the t-statistic for agreement between Yi and Ŷi(i):

r↑i =
Yi → Ŷi(i)

s.e.(Yi → Ŷi(i))
=

Yi → Ŷi(i)

s(i)

√
1 + i (

T
(i) (i))→1 T

i

=
Yi → Ŷi

s(i)
↗
1→ Pii
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Notation Inference Problems Mean model misspecified Covariance misspecified Normality

Creating and interpreting a normal Q-Q plot:

• y-axis: residual, e.g. r↑i , in increasing order
x-axis: quantiles from a normal distribution

For jth ordered residual, plot
{
#→1

[
j→3/8
n+1/4

]
, jth ordered residual



• Good when n ≃ 30, better when n ≃ 50. (theory says ok when n ↓ 5)

• Look for pattern

How to correct nonnormality?
TRANSFORMATION, e.g. Box-Cox
Make variances equal Address outliers

Illustration
Salary as a function of years of experience

num

um umu



3. Unusual Data

(i) Outlier

(ii) influential point

Studentized residual

Q

⑤

②
Cook's distance
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Unusual Data Points Computational Instability

3. Computational Instability, aka Multicollinearity:
• Do di!erent predictor variables provide redundant information?
• A!ected by choice of values for predictors X1, X2, . . . , Xp

Definition:

Multicollinearity exists when two or more of the predictor variables
used in regression are moderately or highly correlated.

X =





1 4 4.01
1 6 5.98
1 7 7.02
1 8 7.99



, r(X) = 3

But solving XT Xω̂ = XT Y will be highly unstable!
NEEDS:

• Recognize when multicollinearity is a problem
• Take corrective action
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Unusual Data Points Computational Instability

Diagnosis . . .
Indirect:

• Look for symptoms, although they can happen for other reasons:
• Large changes in ω̂ when predictor variable is added/omitted
• ω̂j has a sign opposite what is expected
• Model has significant F but many non-significant t tests
• Sequential SS and partial SS are very di!erent
• Variances of ω̂j are very large
• High correlation between ω̂j and ω̂k . This may violate simple interpretation

of regression coe!cients as measuring change in E(Y ) when a given predictor
variable is increased by 1 while all others are held constant.

Direct:
• Large (simple) correlations between predictor variables
• Large variance inflation factors
• Condition number and indices, i.e., scrutinize structure of XT X (won’t cover)

* this15 very important
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Unusual Data Points Computational Instability

Variance Inflation Factors (VIF) . . .
• One for each predictor variable in the model, except intercept
• VIFj = 1

1→R2
j
, R2

j is coe”cient of determination from regressing Xj on all
other predictor variables (including intercept)

• 0 → R2
j → 1 implies 1 → VIFj

• R2
j ↑ 0 implies VIFj ↑ 1 and R2

j ↑ 1 implies VIFj very large
Xj involved in linear dependency with other non-intercept predictor variables

↓ R2
j ↑ 1 ↓ VIFj very large

• var(ω̂j) = ε2 · VIFj † : jth variable ↔ all others ↓ VIFj = 1
• FLAG: VIFj > 10 indicates problem, VIFj > 30 severe problem
• Una!ected by centering predictor variables
• Detects overall collinearity problems with more than just the intercept
• No direct indication of:

• number of linear dependencies
• which other variables are involved in linear dependency with Xj

†assumes centered & scaled predictors

mus

mu
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Unusual Data Points Computational Instability

Possible Corrective Actions . . .
• Drop one or more of the correlated predictor variables
• If you decide to keep all predictor variables in the model:

• Avoid making inferences about the individual ω values, and don’t try to
determine “relative importance” of the predictor variables

• Sacrifice unbiasedness to get smaller variance ↭ Biased Regression:
• Principal Components Regression (PCR)
• Partial Least Squares Regression (PLSR)
• Ridge Regression
• LASSO, ElasticNet, etc.
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Unusual Data Points Computational Instability

Example: Cigarettes [dataset FTCCIGAR.txt]

Can we model the carbon monoxide content of cigarettes as a function of
their tar content, their nicotine content, and their weight?

Y : carbon monoxide
content from cigarette
smoke [CO]

X1 : tar content of cigarette
[TAR]

X2 : nicotine content of
cigarette [NICOTINE]

X3 : weight of cigarette
[WEIGHT]
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Unusual Data Points Computational Instability

proc reg data=cigar plots=none;
model co=tar nicotine weight /vif;

proc reg data=cigar plots=none;
model co=nicotine weight /vif;
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Unusual Data Points Computational Instability

proc reg data=cigar plots=none;
model co=tar weight /vif;

proc corr data=cigar
plots=matrix(histogram);
var co tar nicotine weight;
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Unusual Data Points Computational Instability
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Unusual Data Points Computational Instability

Using R . . .

> fit = lm(CO ˜ TAR + NICOTINE + WEIGHT, data=FTCCIGAR)

> install.packages("car")
> library(car)
> vif(fit)

TAR NICOTINE WEIGHT
21.630706 21.899917 1.333859

> cor(FTCCIGAR)
TAR NICOTINE WEIGHT CO

TAR 1.0000000 0.9766076 0.4907654 0.9574853
NICOTINE 0.9766076 1.0000000 0.5001827 0.9259473
WEIGHT 0.4907654 0.5001827 1.0000000 0.4639592
CO 0.9574853 0.9259473 0.4639592 1.0000000
>

Recommendation: Drop nicotine from the model.
from R& R adjust



Diagnostic Measures for GLM

GLM Diagnostic
Recall : some residuals 1

.

+ Deviance lack of fit test

2
.

Residual

①
②

⑪

: 3 Influence (analog cooks distance

7

T

②

③I!
· non-convergence , high SE

,
LR20.

4. Complete/ quasi Complete separation

· happens when rare events , large prediction space

many binary prediction , small sample size
.

· biased regression (Firth's procedure) (to fix)
· quick cheek : deviance/dFError

~ I model fits well

< I possibly overfitting
> I underfitting ,

overdisperson



Exponential Family
General Forms & Rules

Definition 1 :

e , 4 ; y) = [SYii-blo + Clyi . 4 :Wils th1 a very weid for,as
· Mi = g"(XiB) 15 some function of 13 i doesn't put T(X) altogether ·

· 0 15 some funtion of M (thus B)

Definition 2:

Y = EF(0 , 4)

flyio . 4) = expTysgloblo ny,
· ↑ disperson parameter
· E(Tiyi) = b'10)

· Var(Tiy)) = a(P) b"10)

Definition 3 : fiyios = exp[Tysg10)-bios 3 hrys
g(0) : natural (canonical) parameter

Tiy) : Sufficient Statistics

* Assume O =gl0) If the canonical parameter :

Sexp (Tysgio)-blo)]hiysdy = 1

JeTygio-blog hiys dy = I2. jetegies hiys dy = e
blO)

=> SeTesohiyidy = e
b(0) *

g(0) = 0

=> Stigsehesohiysdy = bios e
b(0) #

derivative writ. O on both sides

Stys eneo-bloc huysdy = bio

=> ECTcy)) = bO)

var(Tiys) = b "10) Similarly



Univariate Normal

f(x)=-
= exp(- log(2π0) -

[(Xi-MR)
282

= exp(- Elog(250) -

[xi2-2MEXi +M2) < Complete & Sufficient Statistics (IXi . IXi)282

= exp)-Elog(252+MIXi-MY-
02

= exp(MIM - log(52) - E log(T)-
4 = 220 = Mb(0) = M-

Wi = = < (y , 4 , wil =
- * log(8 -Elog(T)-

* MGF derivation

Mx(t) = E(e
+Y) EX=M VarX = j2

(X-M(2

=Lete dx
262X

-
x=-2xM +12 +

202dX202xzx+202dx
z + Mot

= Sun-M · C

t2j2

dX
+282/2 +ME

= 2

Multivariate Normal

fx(x) = detiztz1 exp)-(X-M)'z "(X-M)

= exp(-logdet (2πz) - E(X-M)'z(X-M)

= exp(-loydet(2tIl- (XzX-2MEX +Mzm))

MGF = etzt + -M

*
Conditional Normal

(4) ~ N((2) ,( l
X Y ~N(M. + 212Iz(Y-M2) , [11 - Zzzz221)



Gamma

1
. Shape 2

,
Scale B < this As the most common case

I 2- 1 -X/B
fx(X) = +(2)BC XC 0X EX = GB VarX = 213

f(x)= X :**
-X : /B

< Xi

= exp)-Mlog(T(h) - n2log(B) + 12-1) log(Xi)-IXi)

= exp) -B[Xi - Mlog(T())
- nalog (B) + (2-1)[logXi

4 = 10 =
- ⑬ b(o) =

-H1g(T()) -nGlog(B)
Wi = 1 acy . 4,

wil = (2-1) ZilogXi

Ex = S% Xia X**-*** dx Sufficient & complete statistics

=58Bayk+1 -
y

-X/dx T(X) =EXi , ZiloyXi)
&

= 98 T(+ 1)B2+ 1
·<By(

- )- EX/dx

= LB

2. Shape & & rate o
*

this is not being tested too much
.

As long as always remember O =F.

Beta

fx(x) =

X
*"(-X(B+

with B(2 , B) = T&TB(2 , B) 02X = /

=I xAXB

= exp(log(f) + (-1) log(x) + (B- 1log(1-x))

= exp((d-1) log(X) + (B- 1)log(1-x) + log(s))
4 = 1 w = 10 = 0 bla = log()
aly , 4 , wi) = (d- 1 (oyX + (B - 1) log(1-X

EX=B Sufficient & complete statistics
CB

VarX = (d+B)(2+B + 1) T(X) = (zlogXi · Zloy(1-Xi) (

Beta(1 , 1) = Unifco , 1)



Exponential
*

time between poisson events

1. scale = mean = B

fx(x) =Be
+1

~ Gamma (shape =1
,

scale = B o < X

= exp(-logB - EX) sufficient & complete statistics

T(x) = [Xi
d = 1 v = 1 b(0) = - by p=
acy , , w) = 0

E(X1 = SoXe
* 13dx

= -xe+
+ j8eY1dx n = X v=&*11

= -xe
-Y1

- BE
-*118 v= 1 v = -

-Y

= B E(X)= B

Var(X) = B2
Mx (t) = Ele

+Y)

e
=98 -xy let's think

then* S . dx = 1

= => f . dx = B*

2
. rate = X ( = 1/

- XX
fx(x) = Xe

= exp(log() - XIXi

0 = -X 4 = 1 w = 1 Sufficient & complete statistics 15 IX :

b10) = log(N) E(X) = Y/X

Var(X) = Y/x2
Ex = j8xxe

-x

=
- x

*
+98

*

dx u = xv= xe
-*

-*
- *-* 1 % v= 1 V = --X= - x2

=



Mx(t) = Ele+Y (
= S: e** xe

**

dx
-X(X-t)

= fixe dx
X

=
X -t

weibull
*

not exp family

* Just know some relationship.

exp(B) = weibull (1 . B) = Gamma) 1 . B)

X-Weibulka ,b) X
*~exp(ba) both scale-liked

.

Canchy
*

not exp family

* Just know some relationship.

* undefined mean & variance

X indep Y ~N10 . 1)i * ~ Cauchy 10 , 1)

log-normal *
not exp family ( ?)

f(x)=exp719) Sufficient and complete statistics [ilog(i) (?)
logX-

My
= exp(-log(x) - Eloy(2T04) - 2 ja



Uniform *
not exponential family

~ Unif(0 . 1) E(X) = E

f(x) = 1 [(0cX = 1) Var(x) = +

f(x)= 1 [COEXiE1) SufficientStatistics Xci)
,

Xin)

= I(8aXcs ,
Xin> 1 Not complete ,

(X) + Xin)-(a + b) has mean o

P(XEX) = 1- P(XinIX)
every where ,

but is non-trivial .

= 1- P(X , = x)
*

= 1 - (1 - x)"

fx(x(x)=x1- (1 - x)
n

= n . (1- x)"
- 1

= n(l-X("" Beta(1 , m)

P(Xin)[X) = P(X
, <X)"

r
= X

fx(n, (x)=xP(X(n) = X)
n - 1

= UX ~ Beta(n , 1)



*
Poisson

#P(X= Xi) = Prunin
time Ispace

EZ = eM

X !

= exp([log(Xi ! ) + [EXiloyX - nx ( Sufficient & complete statistics IXi

4 = 1 w = 1

Prix bos =Ho

Ex = [xX . */X ! EX = X VarX = X

=Iex
(x- 1) !

0xx
- ex

= X[x= 1(X - 1) !

= X

Mx(t) = E(e
+

Y(
-

0 +xx
*ex

= 2xoC X !

= [Polex) * e
- x

X !
-x - 0(e

+ x)Y
= e2x= X !

= e 2
etX

Net- 1)
= e

Bernoulli
*

occurance of event in one trail
1-X ;

#P(Xi =Xi)=*
(1-P

= exp(EXilog(i) + Mlog(+-p) Sufficient & complete statistics EX :

0 = log(p)
EX = [xp* ( -p)

Y
Ex = P VarX = pCl-p)

I P

Mx(t) = E(e
+Y(

= 2xC
+

p
+

(- p)
+X

= pet + (- p)



Binomial
*

Occurance of event ini trails
H-Xi

P(Xi = Xi)= (i)p
*

c- P

= exp/[log(Yi) + Ixilog(p) + nlogc-p() Sufficient & complete statistics

0 = log (p) b(0) = log(1- p) = (n)1+e1IXi

4 = 1 w = R

EX = [x(y) - xpYc +-pyn
- Y

EX = nD
n N ! n -X

= [x= 1(x-1) : (n-x): Px p(1-p) VarX = npcrp)
n-X

= n -p[xin-x : P
**

<-P

= np

Mx(t) = E(e
+Y)

= Ele
+Yi) with Yi ind BenLPC

= Elet")EletY ...

= (pet + c -p))" < using bemoulli MGF

Multinomial
n !

* P(Xi = Xi) = X ... --Xn ! P,

"
... pr

= explloy(Xi) + X , log() + ... + nlog(Pn))
n !

E(Xi) = Ixo Xi
Xi :... Xni P" ... Pp EXi =Pi

= n . Pi VarXi = Mpic1-Pi)

Mx (t) = (I Pieti)"I inspired by binomial dist
.



Geometric

1. # of failure until first success at prob of sucess p (include sucess)

X- I

P(X = X) = (1- p) P X = 1 ....

M

, P(Xi = vi) = <1 - pXi-npr
= explEXilog(1-p) + nlog(p)) Sufficient & complete statistics

O = boy ( +-p) b(0) =
- ly() is IXi

4 = 1w = t

Ex = [xx(l-p)
*

p Recall Geometric Summation :

= PIE , X (1-p)
* - 1 Zanr = or

= P(- (-pY)
=p([ , (1-p) - 1) Ex=
= p)-p + - 1) Vary=
= P

I

= F
X - 1

Mx(t) = [xie
**

(1 - p)P

E
= (etcrp(

*
- 1) converges when ocetc-p) <

e
+Cl-P)

= 1 - e+p

= pet when etcr-p) < /

1 - x- p)et etp

- In(p)



2. Number of failures before success (does not include success) * may use more of thiscase

waiting time <discrete) to hit the first success (only count for faliures

P(X = X) = C - p
+

P X = 0....

Ex = [xX (1-p)"p
= p(rp) zoX(1-p)X-
= p(1-p) (- I (1- p)Y) Ex
=P

1 - P
=

P

Mx(t) = Ele
+Y)

= [xe+

p(r-p)x
= P2o(+( +p)Y

I
= p -

1 - e
+
(-p)

= P
I-etcrp)

with Ocetc+p) = 1

- < log(ip)

Negatile - Binomial

Number of failures to hit the rth success (does not includer(

waiting time <discretel to hit the rth sucess (only count for failures

X+~ - 1

P(X= X) = ( V- 1 )prc +pX X = 0 . 1 .. --

E(X) =[ X X + -

1)prct
- psY EX( r - 1

= P + p
*

A (X+r 1) !
= [x = 1 ri(X -1) prt (-p)x x - p)

= r
=

P



Mxlt) = (1-ciet)" < inspired from geometric MGF

Since Geometric <p) = Neg-binomial (1
, p)

Hypergeometric * Like binomial but without replacement

P(X = k) = (i)(mis) N : population size

(n) K : number of success
↓Success , n-K fail

=

among all possible results n : number of draw

1 : number of observed success

EX = [x=o x ( * ) (Mix)
(M)

I
K ! (N - k) !=2x* (Y)(X-1) ! ((-x) ! (n-x))(N -n) !

(k-1) ! (N - k) !
= [x(h)(x -131(kx) !

K
(n-X) ! (N -1) !

(k - 1) ! (N - k) !
=I (H-1) ! <N -M)! N (X-1) !( -x) ! ((n-x) : (N -n) !(N - 1) !

=[x( =1)(=)
~

N

(n = !)
nk

=
N



Distribution Theory

Multivariate normal distribution

YEMP-Np(M , 2) E rY-NCVM , VIr) withvEv > o

fycy) = det (2+ z)-
* exp(-I < Y-Miz(y-M)) => Mylt) = e

tim + It'It

E(y) = M

Var(y) = z

t distribution X ~ N(0 , 54)

* X-NI , K indep. Her
p

E Insider N10 , 1)

X/u/p v Tp(M) ~x
N10 , 02

~TP

F distribution

O U . ~Xi
,

indep . U2 ~Xp
F =Y Fp, P

② U .~x,
10) indep . UseXp

F=FpP

chi-squared distribution

① ZidN(o , 1) = ZwNplo , 7)
- P/z

V : [Fzi-Xp => Mult) = <1-2t)

E(v) = P

Var(V) = 2 p

② zidN(Mi , 1) = zvNp(M ,
1)

V :ZirXEZIM) eMult) = <1-2t]* P witht

E(v) = p + 20

Var(v) = 2p + 44

③ Ui ind Xp; (Pi)

U : = i Ui ~Xpi(zPil

* & X ~Np(u , v) = XvX-XMvM)



Lemma : A =R
" *~

15 symmetric and idempotent matrix with rank (A) =S if A = GG' for some matrix

GR
*S

with GG = Is and rank (G) = S
.

* Theorem: Let X-NnCM . 1) . If A is a symmetric and idempotent matrix with rank (A) = S
, then

XAX ~ Xs(IMAM)

Proof : A = GG
'

=> &~ NsCGM , GIG) = NsCGM , Is]

=> XGGX = XAX ~ Xs(MGGM) = XIMAM)

Usage : YN(XB , G

*~N( ,
7)

Y(PX - Px , )y ~ XankPxPx) (BX(PxXB)

Theorem : Let X ~ NnCM . v)
. If A 15 a symmetric and Ar idempotent with rank(Ar) = S,

then XAX- *SEMAM)
Proof : V = L' for V symmetric & P.

D. = Y : = <"X-NplIM , Ip)

XAX = X (2)L'ALL"X
= YLALY => since B= (LAL)' = CAL 15 symmetric
= YBY ~YIMB(IM) BB = CALLAL = LAVAL =L'AVALL'il

= xs (IM'AM) = L'AVAVIL'l = L'ArIL'" = CAL

- 15 idempotent

want to know > rank(B) = trace(B) = trace((AL) = trace(LA) =trace (VA) = rank (Av) = S

how to proof 1 Theorem : Let X-Np(M , v) and Asymmetric ,
Lank(A) = S

. If BrA =0 for a given B,

this ( then BX and XAX are independent .

Corollary : Let X-Np(M , r) , Let A be a symmetric matrix with rank(A) = W . let 1 be

a symmetric matrix with rank<B) = S
. If BVA =O

,
then XBX and XAX

are independent.
Cochran's theorem: Let Y-NnM, 02In) and let Aibe symmetric and idempotent with rank (Ai) = si

↓ i = (1 .

. .

., k)
. If IAi = In

, then FYAiY-YizMAiM) ,

Zitisi = n
,

and EYA , Y
,

. . .

. JyAkY are independent .



Distribution relationship

No, 17 ~ x5 : NEM ,DXCIM) ; NMIRRX(2)

NCO , 1

ir-p>Xinp trup > tp-Fip : X indep.

2
,
~ Fair

Scale

X = Gamma (*
,
2) id Xalbi) = Xzai(Ibil

= Gamma(&,E
rate

scale
iid

Scale (mean

2 exp(x) = Gamma (n , N >expGamma
scale = 1/ rate

fx= e
*

X : scale X : rate
rate

↓z Gamma(ai
,
b) = Gamma (Zidi , b) > b Gamma (a , b) = Gamma (a , 1)

PoicM) indep. Poicx) , poies + poicx) = poich + X

For poisson , rate = scale = mean = X

exp(B) = weibull (1 . B) = Gamma) 1 . B)

X-Weibulka ,b) X
*~exp(ba) both scale-liked

.

X indep Y ~N10 . 1)i * ~ Cauchy 10 , 1)

Beta) 1 ,
1) = Unifio , 1)

neg-binomial (1 , p) = geometric(ps



Inequalities
Bool's Inequality
P(UEi) <[PEi)

Trangular Inequality Product Inequality matrix
nor

11 X+YI1 = /IXII + 11 y11 IXXyI & /I XII XII YII

Markov's Inequality
P(X > &) < E(X)

Chebysher's Inequality
var(X)

P(IX-E(X)1 > E) = E2

Jensen's inequality

E(g(x)) = g(E(X)) if g () is convex [0ifixi) = flEDiXi)

E(g(x)) [g(E(X) if g(.) is concave

*
Equality meet when :

1
. X 15 Constant almost surely :

P(X =c) = 1 = E(q(x)) = P(E(X))

2. 4 It linear>affne) over the range of X :C P(x) = ax+bS
a .K .a .

ifo is differentiable and convex ,
then

P(X)+ PLEX)(X-EX) &by Taylorpansionen convexity
~

with equality ifItangent line of g() at EX,

P(q(X) = P(EX) + P'EX)(X-EX)) = 1

Cauchy-Schwartz Inequality
Cov(U , r) < Var(u)Variv) = (EIXY)R < E(X)ECY2) equal iff x = aY



Set Operations
Properties of set operations

Commutativity :

AUB = BUA ; AlB = BRA ; AUB = BLA

AOB = (A - B) v (B(A) = (AUB) <(A1B) = CAMBY UCB1A'

Associativity :

#UBIUC = AUCBUC) ;lB)1C = An(B1C) :

(AwB)oC = Ar (B+c)

Distributivity :

An(BUC) = (A1B)U(ANC)
* U(B1C) = (AUB) 1(AUC)

De Morgan's law :

LAUBY = AP1B2 : CAMB) = AUBa



Variable transformation
General Methods :

1
. By CDF

,
MGF

2
. By pdf/pmf :

1
. Law of total probability( when in IRC

2. Jacobian (when in IR"(
1

L (when sign changes
be aware the range of new parameters< from the range of olds.

3. By distribution relationship recognition

Example

SS fixiyidady1

_ c*

dx P(X =2 , y13) = 95See**

dxdy
= 98c1-eY)1 dy

= Size-e
*12 dy

= Sizefe+e) dy
= S8c3(1 - e3) dy

-zy
= cS: -e dy

=-2jedy + 2efedy
-2-y

= c)-e +te )1 =
-2- (-z)e2y

- 22
-y-218

= c(- o + o + 1 -E) = e
+

- 22
-6 -5

= S 1
= -e + 22

- 6
Y = ze

*
- e

= c = 2

-NIIIy
2XY

- Y 32y=

-

I

2 X



E(Xy) = SS XY fixy) dydy Y

= So'S :" xy - 120xy(1-X -y) dxdy MM
=SoSR20x&

y
*

(1-X-y) dxdy I X

0 = X11- Y
= SyScoxy'ddy-SS120xydxdy 0 = y = 1

- Syf, 120x5y3dxdy

= Synoxy2/dy - Sysoxy dy - Synoxy dy
= Sy40(1-ysy2- 30crys

*

y2 - 4011-yzys dy

= Sy (1-y3y
2

(40 - 30 (1-y) - 40y) dy
= Sy (l-y> yz (10- loy) dy
= 10Sy(-ysty

-

de
t = 1 -y dt = -dy
y = 1 -t

=

- 10(zt(-t)dt
0 = y =

=

= 10Sz t* (1 -2t + +2)dt ↓ ↓
t = 1 t= 0

=

- 10St +4- 2t5+ tod=

== 10(bt5 - -to+ t7)19
= 10(5 - 5 + 7)

35 25
= 10) 85 -105 + 105(

= 10(165)
110

=
105

=



E) Xy) = So%*g
**Y easy to start with Z

· Xy 120x)1-X-y-z)dzdydX last to integrate X

= Sizox=

J
*

y g :*
Y

(1-X-y -z)dzdydx
O

= S: 10x9
*

y(z - Xz -yz-z2)/1-dydy
= S6120x

*

fo
x

y(1-X-y - X(1-X-y) - y(-x-y) - z(-x-y()dydx

= So 120x9
*

y(1-x-y- X +x+ xy
-y +xy+y-Ex -zXy - 2x -

zy +x+y
=

)dydx
= So 120x29 - zxy + x y + 2xy

=

- y = +y- Ey +xy+ xy +y2- Ex-y -zydydx
=

- xy + Ex-y + 3xy + 2y- zy
:

P(X+ y = 1) =S loxydydy Y
- X = y

=SXysl * dx
=( (X(1-x)3 - x4)dx := (: (x(1 -2x+x2)(t-X) -X4)dx ) X

=f= -(x - 3x+ 3X- 2x4)dx E X < y < 1 -X

=X-x+X
*-x51 0 - X - t

s
0 X Y

+
0 <y

o < Xxl - y

2 <y



Yy fixy)dudy 1 P(Y = 2x)

= cSogoxydxdy = So S15xy dx dy y
Y=2x

X-I

= cjjy98Xdxdy = 9: 5xy le dy
= CS: Y5X3 13 dy

= Jo5y" - Ey dy ·
ment

= ES6Y" dy ↳ X

= y5 - jy51 ! should always find the
= 55 y51'o = I clear cut-off

= 1

C = 15

P(X+ y = 1) = SS
*

Edydy Y X = y

= 5-el* dx *=-
"x

+edx *

D

- x-x)

=- C - e
* /

=-- + e + 1
- I

-I
=1 + e - 22



Reparameterization & BLUE

Reparameterization

Definition (Reparameterization) : Let XIR"** and welR
**&

The linear models Y = X B + 11 and Y= wr + H are reparameterizations of each other
, if

fo((X) = clcw)

Theorem : Suppose clcX) = colcw) ,
then PX = Pw.

Propositio . If colcx) = clcw) ,
then I a matrix S sit . X = WS

similarly , =T sit . W = X

Theorem : Let colcx) = c(( W). w = XT

Suppose W= XT and & sober the normal equations in W
.

is when G((x) = C(W)

1) . The fitted data & residuals are the same :

Y = PxY = PrYEXXy =W
~

e = (1- Px)y = <I- Pw) y

2)
.

E = T & solves the normal equations in X

y = XB = wr

= XTr => B =T-
Therem: If No is estimatable in the model with design X

,
and solves the normal

equation in design w
, then NTV 15 the least square estimator of NB.

Theorem : If sir is estimatable in design W; then &SB 15 estimatable in design X
,

and

its least square estimator is S'5
,
where Swir = will

y = wr = XB

= WSB-
= = 55



Constraint model

G((X) + okC'
(P-r) XP

Lemma : Suppose CEIR , r : = ank(X) , and colxs + cc's = 903.

Then the following systems are equivalent :

(((p = (*)

(2)( **(0 = ( *Y)

(3)(Xx+ cc)B = XY

Theorem : Let <El'P-rXP with vank() = p - r and colix's + clic's = 903. Then :

2) The matrix xX + cc it non-singular

(2) (xX +ccx'y uniquely solvet XXB = X 'y , c'c8 = 0

(3) (XX + (c)"15 a generalized inverse of x'x

(4) CXX +c('x' = 0

(5) c(XX +(c)c = 1

Definition : The function XB 15 estimatable in the restricted model if and only if there exists a

scalar c and rector a

Sit . E(C +ay) = XB , +B = Sp = b) ( *** )(8) = ( *Y)

Restricted Model : Y = X B + U . E(U) = 0
, BeEB : p = 5)

~

full-col rank

Remember Theorem : In the restricted model ,
C + any is unbiased for XB if and only if Ed

this St
. X= Xa + Pd and c = d'd.

(*) E(C + ay) (E) XB = d'P'B + aXB

= db + aXB = d's + aE(y)
= db + axB + d'P'B -dp'B
= dS + XB-d's
= XB



Theorem : If 5 < cl(p') ,
then there exists a solution to the RNEs.

restriction : p
.

B = 5 ESEGKP's

Theorem : Ifit denotes the first component of a solution to true RNE's :

()())(8) = (59)
then off minimizes &(B) = 11y-XBIR over [PB = 5

Theorem : Ifit denotes the first component of a solution to true RNE's :

()())(8) = (59)
if BESPB = 53

,
then ((B) = &(B) iff P also solves RIVE.

Not only RNE gives a L .S . solution ,
but a L

. S solution MUST soles RNE.

Best Linear Unbiased Estimate

* a . k .a unbiased estimator that achieves CRLB.

Zauss-MarkovModa

Gauss-Markov
E(u) =p S Assumption
for(U) = 521 for some >0

Theorem (Gauss-Markov) : Under the Gauss-Markov assumptions/model , if XB 15 estimable,

then NB 15 the best <minimum variance) linear unbiased estimator

of XB , V +9xx = Xy)
(For any unbiased linear estimate , the one with least variance 15 the LSE).

Theorem : An unbiased estimate of 52 15 Y'CI-PXY/CH-P



Aitken Model

Y = XB + 4

E(u) = 0

Var(u) = 5

V > o know

WVwO WARRY

Theorem (AITKEN

So thisis a Gauss-Markov Model . Consequently ,

the BLUE for any

estimable XB is XBals where Bas <Exv"XB = Xv"Y

remember Theorem : The estimator t is BLUE for ECty) if and only if ty it

this => relatedwith all unbiased estimators of zero.

Grollary : Under the Aitken Model
, Ey is BLUE for ECtifx

Theorem : Under the aitken model
,

Yous is the BLUE for estimable XB iff
Sit. VX = X &



Bayes prior & posterior
Conjugate Priors

Prior Data Posterior

Beta Bemolli Beta

Beta Binomial Beta S think parameters in these are p.

Beta Geometric Beta with Beta o < X 11 Continuous fits well .

Beta Neg-Binomial Beta

Gamma Poisson Gamma

SGamma exponential Gamma may think mirroring the Beta

Gamma Gamma Gamma

Dirichlet Multinomial Dirichlet remember these two separately
Dirichlet Hypergeometric Dirichlet

3
Normal Normal Normal



Convergence Orders



Ancillary & Completeness
show ancillary by family
Location family D Scale family2 location & Scale family &

f(xiM) = fo(X-M) fixir)=fo() : 0 scale fixim , 2)= fo (
*[M)

NM, 52) with known o exponential N(M , 02)

Laplace with fixed scale chi-squared with o Canchy
Cauchy with fixed scale Gamma with fixed shape Laplace

Uniform (M ,M+C) Weibull with fixed shape Logistic

Logistic with fixed scale Uniform (n-

com+ cr)

Location family ancillary statisticsQ

· Sample spacing : (X12)-Xci , Xc3-Xcas ,

---

,
Xany-Xan-u)

Sample range : X(n) - X)

· sample variance : Sna = nI (Xi - X)
"

Example 1 :

Location family , want to show Xin> -Xc ancillary ·

Show X-o-exp(1) invariant of 0
,

this (in)-0)-(XID-0) is also invariant of O

Thus Xcn) - XID 15 ancillary.

Scale family arcillary statistics②
· sample ratio : (ii ..... )
· The -Stutttis : or robust E =X medium

location - scale family ancillary statistics③
· normalized sample spacing : (X(2)

-X(1 .....Xin)-XCIs

sample range/sample s .
d . ratio :

Xin)-X(i
Sn



Uniqueness of power series- use this to proof completeness.

Example 1

Xi id Poisson(x) ; IXi id poisson (nx)
- nx (nx)+

set

Elg(t)) = [10 g(t) 2 t !
= 0

=> [tglt) = 0

=> [ (nx* = o

=> & = 0 Ft by uniqueness of power series

=> g(t) =0 ft

Example 2

Xi d exp(X) : IXi ind Gamma (n , x)

E(g(x)) = Sog(x) +x*"
*
dxo

C

=> So g(x) X
**
e

**

dx = o

I S: g(x)x
*"(-X(

**
dx = 0 = fig(x))- x

*
)

*
dx = 0

98g(x) x
**

e
**

dx = 0

:

Thus g(x) e
**

= 0 everywhereX

Thus g(x) = 0



Asymptotic Theory
Cramer-Rao Lower bound (RCLB) E called Cramer condition

T
Under regularity conditions , the inverse of the fisher information 15 attained.

1. Model 15 correctly specified
2. The log-likelihood is sufficiently smooth (e .g. differentiable up to second order

3. The fisher information is positive definite and finite

4. The MLE exists and consistent

55. The secore function has mean zero and finite variance Y reaches the CRLB

*Violation : Score has to be a linear function of an unbiased estimator.

But for MCE estimatis , the CRLB always met asymptotically.
Wilk's Theorem assumptions

Ho : DE Go Hi : 0 = O 10 o2.
f(x 10) # f(X(02) if 0, 82

and this estimator

by wilk's theorem

↑ =SUPT -2log1d < X: k = dimco)-dim(Go)

Assumptions :

1. otO uniquely determine the distribution of data

2. Thre parameterDo must lie in the interior of parameter space O .

I on the boundary ,
the limiting distribution might not be chi-square .

3. Regularity of Likelihood

Twice differentiable in 0

well-defined , non-singular fisher information

Expectation of derivatives exists and can be interchanged with integration
4 . Large Sample n +1 to use Wilk

5 . MLE behavior Consistent & asymptotic normal

Once00i(8-po) &, NIO , I"COo7

6. Nested Model

Go O < ensures the likelihood ratio it well-defined

Violations : Zero-inflation Poisson & mixture distribution

Cannot test for Ho : TT =0 , 1 : Ho : P = any value - To , 13

Can test for Ho : IT = some value & Co , 1)



Law of large number (weak)

Suppose X-D1) , E(X) =M .
Var(x) =r**

Thi X M

Convergence in Probability
PCIXX1 > 2) >O can be some scalar
-

B1
. Y definition

2. Use WLLN (But must know at least mean & variance)

3. If limVar(Xn) = 0
,
and lim E(Xn) = a

,
there Xn> a

↓
P(IXn - akE)E(Xn- a72

when can't get rid of 1 . 1
, at t

Varaxeluse Ell . 1) or Var(1 . 1)
,

otherwise,
22

use probability method.
var (Xu)

->

E2

30

Convergence in distribution

Xn & X if Fxn -> Fxx

1
.

Central Limit Theorem (CLT)

2. Delta theorem

3. Slutsky theorem (usually CLT + WLLN)

4. By definition

Centra Limit Theorem

1. For sample mean

Xi D ElXi) =M Var(Xi) =0

m(x -m)aN(0 , 04

2. For some estimator

E(On) = 00 or bias = o() En 780 #

(On - 00) -> N10 , 82)



Delta Theorem

m(X - M) = N(0 , 04

Consider g(x) diferentiable and g(M)#0

un(g(x) - g(m)) = N(0 ,gir

Slutsky Theorem

Suppose XnEX . Ync ,
then

· aXn + bYn - aX + bc

· XnYn & X

Continuous Mapping Theorem

&Xn) be a k-dimensional random rectors
.

Let g : IR"-IR"be a continuous function .

Then XnX => g(Xn) = g(X)
&

Xn- X => g(xn) = g(X)

XnX => g(Xn)jg(x)

Examples :

P((Yn-01 >2)

= P(/minXi-0 !>)

= P(MMXi > EtO) as OXi

= P(Xi -+on
N

=(Sdx &
= (e-e*)10)"
= (e0-19+)n
=e

ne
30 as n -> c



-

P(n
*

(l-maxxi) [X) = CDF

= P(1-maxXi = X . R2) ~ Betal1 , 2)
T(d+1)

= P(maxxi = 1 - X . -2) fx(x) =
T() +(2)(X) (1-x-

-I 2- 1
= 1 - P(miXi = 1-X-n) = 2 . (1-X)

= 1 - P(X := 1-X -nam Fx(x) = S]2x1-x)
+

dx

= -- I =

- (1-X)91%
= 1 - (-x) axa

> 1 - e-XE

Exexa
= 2x

**X
I(0X(0)



Cheatsheet

Law of total expectation (and related definitions

EIY) = Ex(E)YIX7)

= P(XxX)E(Y(X>x) + P(X(X)E(Y(X & X]

= S8P(Y - t)dt

Law of total variance

Var(Y) = Ex(Var(Y(x)) + Varx(E(YIX)

= Ey)Y- EY)(y - EY)

Cov(X , Y) = for(X , ECYIX)

= EXE(Y(x)) - E(X)E(Y)

Taylor Expansion :

g(x) = 2,
ga)(x -a)k

K !

=> g(X) < g(a) + yg(a)(X-a) when g(. ) convex and diferentiable.

Geometric summation :

(n (1 + x) =2 yn+1
minx = 71 , 1]

+no instances > #X = InoX" with X-C-1 , 1)

K&Exm x is
X

K'

MZari=)
. => zari = F1 - +

[2 ,
(zi -1 = n

2

Usefull Property Given z ~Elzl =M , Var(z) = v ; ELEAZ) = tr(Ar) + MAM
-

I ElZAz) = E)lz-M +)A(z -M +M)

use to find the =E)IZMiAlZ-M) +MACZ-M) + 1E MIAM +MAM)

expectation of SSR = E)(E-MsAlz-M)) + o + O +MAM

or sSE in fums = Eltrace(Iz-ul'Alzl) +MAM

that y'AY = ECtrace(A(z-M) (EM)'l) +MAM
= tr(E(Alz-M) (Z-M)')) thAm

= tr(AV) +MAM



Gamma function T(x) = (X - 1)T(X +1)

= (X - 1) !

T(E)=

↑(E)=·)=

MGF for Normal

Mx (t) = etzt +t

MGF for X2 - 2t

Mx(t) = (1 -2t)e25

Ex = p + za

VarX = 2p + 40

Theorem (Gradient)

a . beir" AEIRY

(a)
.

-bab = a

(b)
. JbbAb = Ab + ATb = ( A + AYb

Sequential Sum of Square If intercept : Pe

J


